Spaces:
Sleeping
Sleeping
File size: 2,315 Bytes
341bdae 3375473 341bdae 3375473 341bdae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import sys
sys.path.append('src/') # Add src to path
import gradio as gr
from utils import get_array, save_video, make_predictions
from data.processing import Scaler
examples = [["data/2023-05-05.mp4", '2023-05-05', '12:00:00', '21:30:00'],
["data/2023-09-07.mp4", '2023-09-07', '07:00:00', '16:30:00'],
["data/2023-10-28.mp4", '2023-10-28', '12:00:00', '21:30:00'],
["data/2023-11-09.mp4", '2023-11-09', '01:30:00', '11:00:00'],
["data/2023-11-13.mp4", '2023-11-15', '00:00:00', '09:30:00'],
["data/2023-11-18.mp4", '2023-11-18', '00:00:00', '09:30:00']]
scaler_dict = {"2023-05-05.mp4": "models/scaler_1.pkl",
"2023-09-07.mp4": "models/scaler_2.pkl",
"2023-10-28.mp4": "models/scaler_3.pkl",
"2023-11-09.mp4": "models/scaler_4.pkl",
"2023-11-13.mp4": "models/scaler_5.pkl",
"2023-11-18.mp4": "models/scaler_6.pkl"}
def predict(source, date, start, end):
print(f"Date: {date}")
print(f"Start: {start}")
print(f"End: {end}")
X, y = get_array(source, scaler_dict)
print(X.shape, y.shape)
file_path_input = 'data/input.mp4'
save_video(X, threshold=0, file_path=file_path_input)
file_path_output = 'data/output.mp4'
save_video(y, threshold=0, file_path=file_path_output)
ypred = make_predictions(X)
file_path_predict = 'data/predict.mp4'
save_video(ypred, threshold=0.1, file_path=file_path_predict)
return [file_path_input, file_path_output, file_path_predict]
article = "<div style='text-align: center;'><a href='https://www.linkedin.com/in/rlrocha/' target='_blank'>Space by Rafael Rocha</a><br></div>"
demo = gr.Interface(
fn=predict,
inputs=[
gr.Video(label="Source", visible=False),
gr.Text(label='Date'),
gr.Text(label='Start'),
gr.Text(label='End')
],
outputs=[
gr.Video(label='Input'),
gr.Video(label='Output'),
gr.Video(label='Prediction')
],
examples=examples,
title = 'IMERG Nowcasting from Southern Brazil',
description = 'Precipitation nowcasting of south region of Brazil using Integrated Multi-satellitE Retrievals for GPM (IMERG) data',
article=article
)
if __name__ == "__main__":
demo.launch() |