File size: 6,313 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.

"""
Panoptic-DeepLab Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""

import os

import detectron2.data.transforms as T
import torch
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import build_detection_train_loader, MetadataCatalog
from detectron2.engine import (
    default_argument_parser,
    default_setup,
    DefaultTrainer,
    launch,
)
from detectron2.evaluation import (
    CityscapesInstanceEvaluator,
    CityscapesSemSegEvaluator,
    COCOEvaluator,
    COCOPanopticEvaluator,
    DatasetEvaluators,
)
from detectron2.projects.deeplab import build_lr_scheduler
from detectron2.projects.panoptic_deeplab import (
    add_panoptic_deeplab_config,
    PanopticDeeplabDatasetMapper,
)
from detectron2.solver import get_default_optimizer_params
from detectron2.solver.build import maybe_add_gradient_clipping


def build_sem_seg_train_aug(cfg):
    augs = [
        T.ResizeShortestEdge(
            cfg.INPUT.MIN_SIZE_TRAIN,
            cfg.INPUT.MAX_SIZE_TRAIN,
            cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING,
        )
    ]
    if cfg.INPUT.CROP.ENABLED:
        augs.append(T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE))
    augs.append(T.RandomFlip())
    return augs


class Trainer(DefaultTrainer):
    """
    We use the "DefaultTrainer" which contains a number pre-defined logic for
    standard training workflow. They may not work for you, especially if you
    are working on a new research project. In that case you can use the cleaner
    "SimpleTrainer", or write your own training loop.
    """

    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Create evaluator(s) for a given dataset.
        This uses the special metadata "evaluator_type" associated with each builtin dataset.
        For your own dataset, you can simply create an evaluator manually in your
        script and do not have to worry about the hacky if-else logic here.
        """
        if cfg.MODEL.PANOPTIC_DEEPLAB.BENCHMARK_NETWORK_SPEED:
            return None
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
        evaluator_list = []
        evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
        if evaluator_type in ["cityscapes_panoptic_seg", "coco_panoptic_seg"]:
            evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
        if evaluator_type == "cityscapes_panoptic_seg":
            evaluator_list.append(CityscapesSemSegEvaluator(dataset_name))
            evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
        if evaluator_type == "coco_panoptic_seg":
            # `thing_classes` in COCO panoptic metadata includes both thing and
            # stuff classes for visualization. COCOEvaluator requires metadata
            # which only contains thing classes, thus we map the name of
            # panoptic datasets to their corresponding instance datasets.
            dataset_name_mapper = {
                "coco_2017_val_panoptic": "coco_2017_val",
                "coco_2017_val_100_panoptic": "coco_2017_val_100",
            }
            evaluator_list.append(
                COCOEvaluator(
                    dataset_name_mapper[dataset_name], output_dir=output_folder
                )
            )
        if len(evaluator_list) == 0:
            raise NotImplementedError(
                "no Evaluator for the dataset {} with the type {}".format(
                    dataset_name, evaluator_type
                )
            )
        elif len(evaluator_list) == 1:
            return evaluator_list[0]
        return DatasetEvaluators(evaluator_list)

    @classmethod
    def build_train_loader(cls, cfg):
        mapper = PanopticDeeplabDatasetMapper(
            cfg, augmentations=build_sem_seg_train_aug(cfg)
        )
        return build_detection_train_loader(cfg, mapper=mapper)

    @classmethod
    def build_lr_scheduler(cls, cfg, optimizer):
        """
        It now calls :func:`detectron2.solver.build_lr_scheduler`.
        Overwrite it if you'd like a different scheduler.
        """
        return build_lr_scheduler(cfg, optimizer)

    @classmethod
    def build_optimizer(cls, cfg, model):
        """
        Build an optimizer from config.
        """
        params = get_default_optimizer_params(
            model,
            weight_decay=cfg.SOLVER.WEIGHT_DECAY,
            weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM,
        )

        optimizer_type = cfg.SOLVER.OPTIMIZER
        if optimizer_type == "SGD":
            return maybe_add_gradient_clipping(cfg, torch.optim.SGD)(
                params,
                cfg.SOLVER.BASE_LR,
                momentum=cfg.SOLVER.MOMENTUM,
                nesterov=cfg.SOLVER.NESTEROV,
            )
        elif optimizer_type == "ADAM":
            return maybe_add_gradient_clipping(cfg, torch.optim.Adam)(
                params, cfg.SOLVER.BASE_LR
            )
        else:
            raise NotImplementedError(f"no optimizer type {optimizer_type}")


def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    add_panoptic_deeplab_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(cfg, args)
    return cfg


def main(args):
    cfg = setup(args)

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        res = Trainer.test(cfg, model)
        return res

    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    return trainer.train()


def invoke_main() -> None:
    args = default_argument_parser().parse_args()
    print("Command Line Args:", args)
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )


if __name__ == "__main__":
    invoke_main()  # pragma: no cover