Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,313 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Panoptic-DeepLab Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
import os
import detectron2.data.transforms as T
import torch
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import build_detection_train_loader, MetadataCatalog
from detectron2.engine import (
default_argument_parser,
default_setup,
DefaultTrainer,
launch,
)
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
COCOPanopticEvaluator,
DatasetEvaluators,
)
from detectron2.projects.deeplab import build_lr_scheduler
from detectron2.projects.panoptic_deeplab import (
add_panoptic_deeplab_config,
PanopticDeeplabDatasetMapper,
)
from detectron2.solver import get_default_optimizer_params
from detectron2.solver.build import maybe_add_gradient_clipping
def build_sem_seg_train_aug(cfg):
augs = [
T.ResizeShortestEdge(
cfg.INPUT.MIN_SIZE_TRAIN,
cfg.INPUT.MAX_SIZE_TRAIN,
cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING,
)
]
if cfg.INPUT.CROP.ENABLED:
augs.append(T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE))
augs.append(T.RandomFlip())
return augs
class Trainer(DefaultTrainer):
"""
We use the "DefaultTrainer" which contains a number pre-defined logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can use the cleaner
"SimpleTrainer", or write your own training loop.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if cfg.MODEL.PANOPTIC_DEEPLAB.BENCHMARK_NETWORK_SPEED:
return None
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type in ["cityscapes_panoptic_seg", "coco_panoptic_seg"]:
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
if evaluator_type == "cityscapes_panoptic_seg":
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name))
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
if evaluator_type == "coco_panoptic_seg":
# `thing_classes` in COCO panoptic metadata includes both thing and
# stuff classes for visualization. COCOEvaluator requires metadata
# which only contains thing classes, thus we map the name of
# panoptic datasets to their corresponding instance datasets.
dataset_name_mapper = {
"coco_2017_val_panoptic": "coco_2017_val",
"coco_2017_val_100_panoptic": "coco_2017_val_100",
}
evaluator_list.append(
COCOEvaluator(
dataset_name_mapper[dataset_name], output_dir=output_folder
)
)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def build_train_loader(cls, cfg):
mapper = PanopticDeeplabDatasetMapper(
cfg, augmentations=build_sem_seg_train_aug(cfg)
)
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_optimizer(cls, cfg, model):
"""
Build an optimizer from config.
"""
params = get_default_optimizer_params(
model,
weight_decay=cfg.SOLVER.WEIGHT_DECAY,
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM,
)
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
return maybe_add_gradient_clipping(cfg, torch.optim.SGD)(
params,
cfg.SOLVER.BASE_LR,
momentum=cfg.SOLVER.MOMENTUM,
nesterov=cfg.SOLVER.NESTEROV,
)
elif optimizer_type == "ADAM":
return maybe_add_gradient_clipping(cfg, torch.optim.Adam)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_panoptic_deeplab_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
def invoke_main() -> None:
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)
if __name__ == "__main__":
invoke_main() # pragma: no cover
|