Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,826 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Callable, Dict, List, Optional, Tuple, Union
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import ASPP, Conv2d, DepthwiseSeparableConv2d, ShapeSpec, get_norm
from detectron2.modeling import SEM_SEG_HEADS_REGISTRY
from .loss import DeepLabCE
@SEM_SEG_HEADS_REGISTRY.register()
class DeepLabV3PlusHead(nn.Module):
"""
A semantic segmentation head described in :paper:`DeepLabV3+`.
"""
@configurable
def __init__(
self,
input_shape: Dict[str, ShapeSpec],
*,
project_channels: List[int],
aspp_dilations: List[int],
aspp_dropout: float,
decoder_channels: List[int],
common_stride: int,
norm: Union[str, Callable],
train_size: Optional[Tuple],
loss_weight: float = 1.0,
loss_type: str = "cross_entropy",
ignore_value: int = -1,
num_classes: Optional[int] = None,
use_depthwise_separable_conv: bool = False,
):
"""
NOTE: this interface is experimental.
Args:
input_shape: shape of the input features. They will be ordered by stride
and the last one (with largest stride) is used as the input to the
decoder (i.e. the ASPP module); the rest are low-level feature for
the intermediate levels of decoder.
project_channels (list[int]): a list of low-level feature channels.
The length should be len(in_features) - 1.
aspp_dilations (list(int)): a list of 3 dilations in ASPP.
aspp_dropout (float): apply dropout on the output of ASPP.
decoder_channels (list[int]): a list of output channels of each
decoder stage. It should have the same length as "in_features"
(each element in "in_features" corresponds to one decoder stage).
common_stride (int): output stride of decoder.
norm (str or callable): normalization for all conv layers.
train_size (tuple): (height, width) of training images.
loss_weight (float): loss weight.
loss_type (str): type of loss function, 2 opptions:
(1) "cross_entropy" is the standard cross entropy loss.
(2) "hard_pixel_mining" is the loss in DeepLab that samples
top k% hardest pixels.
ignore_value (int): category to be ignored during training.
num_classes (int): number of classes, if set to None, the decoder
will not construct a predictor.
use_depthwise_separable_conv (bool): use DepthwiseSeparableConv2d
in ASPP and decoder.
"""
super().__init__()
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
# fmt: off
self.in_features = [k for k, v in input_shape] # starting from "res2" to "res5"
in_channels = [x[1].channels for x in input_shape]
in_strides = [x[1].stride for x in input_shape]
aspp_channels = decoder_channels[-1]
self.ignore_value = ignore_value
self.common_stride = common_stride # output stride
self.loss_weight = loss_weight
self.loss_type = loss_type
self.decoder_only = num_classes is None
self.use_depthwise_separable_conv = use_depthwise_separable_conv
# fmt: on
assert (
len(project_channels) == len(self.in_features) - 1
), "Expected {} project_channels, got {}".format(
len(self.in_features) - 1, len(project_channels)
)
assert len(decoder_channels) == len(
self.in_features
), "Expected {} decoder_channels, got {}".format(
len(self.in_features), len(decoder_channels)
)
self.decoder = nn.ModuleDict()
use_bias = norm == ""
for idx, in_channel in enumerate(in_channels):
decoder_stage = nn.ModuleDict()
if idx == len(self.in_features) - 1:
# ASPP module
if train_size is not None:
train_h, train_w = train_size
encoder_stride = in_strides[-1]
if train_h % encoder_stride or train_w % encoder_stride:
raise ValueError("Crop size need to be divisible by encoder stride.")
pool_h = train_h // encoder_stride
pool_w = train_w // encoder_stride
pool_kernel_size = (pool_h, pool_w)
else:
pool_kernel_size = None
project_conv = ASPP(
in_channel,
aspp_channels,
aspp_dilations,
norm=norm,
activation=F.relu,
pool_kernel_size=pool_kernel_size,
dropout=aspp_dropout,
use_depthwise_separable_conv=use_depthwise_separable_conv,
)
fuse_conv = None
else:
project_conv = Conv2d(
in_channel,
project_channels[idx],
kernel_size=1,
bias=use_bias,
norm=get_norm(norm, project_channels[idx]),
activation=F.relu,
)
weight_init.c2_xavier_fill(project_conv)
if use_depthwise_separable_conv:
# We use a single 5x5 DepthwiseSeparableConv2d to replace
# 2 3x3 Conv2d since they have the same receptive field,
# proposed in :paper:`Panoptic-DeepLab`.
fuse_conv = DepthwiseSeparableConv2d(
project_channels[idx] + decoder_channels[idx + 1],
decoder_channels[idx],
kernel_size=5,
padding=2,
norm1=norm,
activation1=F.relu,
norm2=norm,
activation2=F.relu,
)
else:
fuse_conv = nn.Sequential(
Conv2d(
project_channels[idx] + decoder_channels[idx + 1],
decoder_channels[idx],
kernel_size=3,
padding=1,
bias=use_bias,
norm=get_norm(norm, decoder_channels[idx]),
activation=F.relu,
),
Conv2d(
decoder_channels[idx],
decoder_channels[idx],
kernel_size=3,
padding=1,
bias=use_bias,
norm=get_norm(norm, decoder_channels[idx]),
activation=F.relu,
),
)
weight_init.c2_xavier_fill(fuse_conv[0])
weight_init.c2_xavier_fill(fuse_conv[1])
decoder_stage["project_conv"] = project_conv
decoder_stage["fuse_conv"] = fuse_conv
self.decoder[self.in_features[idx]] = decoder_stage
if not self.decoder_only:
self.predictor = Conv2d(
decoder_channels[0], num_classes, kernel_size=1, stride=1, padding=0
)
nn.init.normal_(self.predictor.weight, 0, 0.001)
nn.init.constant_(self.predictor.bias, 0)
if self.loss_type == "cross_entropy":
self.loss = nn.CrossEntropyLoss(reduction="mean", ignore_index=self.ignore_value)
elif self.loss_type == "hard_pixel_mining":
self.loss = DeepLabCE(ignore_label=self.ignore_value, top_k_percent_pixels=0.2)
else:
raise ValueError("Unexpected loss type: %s" % self.loss_type)
@classmethod
def from_config(cls, cfg, input_shape):
if cfg.INPUT.CROP.ENABLED:
assert cfg.INPUT.CROP.TYPE == "absolute"
train_size = cfg.INPUT.CROP.SIZE
else:
train_size = None
decoder_channels = [cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM] * (
len(cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES) - 1
) + [cfg.MODEL.SEM_SEG_HEAD.ASPP_CHANNELS]
ret = dict(
input_shape={
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
},
project_channels=cfg.MODEL.SEM_SEG_HEAD.PROJECT_CHANNELS,
aspp_dilations=cfg.MODEL.SEM_SEG_HEAD.ASPP_DILATIONS,
aspp_dropout=cfg.MODEL.SEM_SEG_HEAD.ASPP_DROPOUT,
decoder_channels=decoder_channels,
common_stride=cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE,
norm=cfg.MODEL.SEM_SEG_HEAD.NORM,
train_size=train_size,
loss_weight=cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
loss_type=cfg.MODEL.SEM_SEG_HEAD.LOSS_TYPE,
ignore_value=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
use_depthwise_separable_conv=cfg.MODEL.SEM_SEG_HEAD.USE_DEPTHWISE_SEPARABLE_CONV,
)
return ret
def forward(self, features, targets=None):
"""
Returns:
In training, returns (None, dict of losses)
In inference, returns (CxHxW logits, {})
"""
y = self.layers(features)
if self.decoder_only:
# Output from self.layers() only contains decoder feature.
return y
if self.training:
return None, self.losses(y, targets)
else:
y = F.interpolate(
y, scale_factor=self.common_stride, mode="bilinear", align_corners=False
)
return y, {}
def layers(self, features):
# Reverse feature maps into top-down order (from low to high resolution)
for f in self.in_features[::-1]:
x = features[f]
proj_x = self.decoder[f]["project_conv"](x)
if self.decoder[f]["fuse_conv"] is None:
# This is aspp module
y = proj_x
else:
# Upsample y
y = F.interpolate(y, size=proj_x.size()[2:], mode="bilinear", align_corners=False)
y = torch.cat([proj_x, y], dim=1)
y = self.decoder[f]["fuse_conv"](y)
if not self.decoder_only:
y = self.predictor(y)
return y
def losses(self, predictions, targets):
predictions = F.interpolate(
predictions, scale_factor=self.common_stride, mode="bilinear", align_corners=False
)
loss = self.loss(predictions, targets)
losses = {"loss_sem_seg": loss * self.loss_weight}
return losses
@SEM_SEG_HEADS_REGISTRY.register()
class DeepLabV3Head(nn.Module):
"""
A semantic segmentation head described in :paper:`DeepLabV3`.
"""
def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
super().__init__()
# fmt: off
self.in_features = cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
in_channels = [input_shape[f].channels for f in self.in_features]
aspp_channels = cfg.MODEL.SEM_SEG_HEAD.ASPP_CHANNELS
aspp_dilations = cfg.MODEL.SEM_SEG_HEAD.ASPP_DILATIONS
self.ignore_value = cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE
num_classes = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
conv_dims = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
self.common_stride = cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE # output stride
norm = cfg.MODEL.SEM_SEG_HEAD.NORM
self.loss_weight = cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT
self.loss_type = cfg.MODEL.SEM_SEG_HEAD.LOSS_TYPE
train_crop_size = cfg.INPUT.CROP.SIZE
aspp_dropout = cfg.MODEL.SEM_SEG_HEAD.ASPP_DROPOUT
use_depthwise_separable_conv = cfg.MODEL.SEM_SEG_HEAD.USE_DEPTHWISE_SEPARABLE_CONV
# fmt: on
assert len(self.in_features) == 1
assert len(in_channels) == 1
# ASPP module
if cfg.INPUT.CROP.ENABLED:
assert cfg.INPUT.CROP.TYPE == "absolute"
train_crop_h, train_crop_w = train_crop_size
if train_crop_h % self.common_stride or train_crop_w % self.common_stride:
raise ValueError("Crop size need to be divisible by output stride.")
pool_h = train_crop_h // self.common_stride
pool_w = train_crop_w // self.common_stride
pool_kernel_size = (pool_h, pool_w)
else:
pool_kernel_size = None
self.aspp = ASPP(
in_channels[0],
aspp_channels,
aspp_dilations,
norm=norm,
activation=F.relu,
pool_kernel_size=pool_kernel_size,
dropout=aspp_dropout,
use_depthwise_separable_conv=use_depthwise_separable_conv,
)
self.predictor = Conv2d(conv_dims, num_classes, kernel_size=1, stride=1, padding=0)
nn.init.normal_(self.predictor.weight, 0, 0.001)
nn.init.constant_(self.predictor.bias, 0)
if self.loss_type == "cross_entropy":
self.loss = nn.CrossEntropyLoss(reduction="mean", ignore_index=self.ignore_value)
elif self.loss_type == "hard_pixel_mining":
self.loss = DeepLabCE(ignore_label=self.ignore_value, top_k_percent_pixels=0.2)
else:
raise ValueError("Unexpected loss type: %s" % self.loss_type)
def forward(self, features, targets=None):
"""
Returns:
In training, returns (None, dict of losses)
In inference, returns (CxHxW logits, {})
"""
x = features[self.in_features[0]]
x = self.aspp(x)
x = self.predictor(x)
if self.training:
return None, self.losses(x, targets)
else:
x = F.interpolate(
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
)
return x, {}
def losses(self, predictions, targets):
predictions = F.interpolate(
predictions, scale_factor=self.common_stride, mode="bilinear", align_corners=False
)
loss = self.loss(predictions, targets)
losses = {"loss_sem_seg": loss * self.loss_weight}
return losses
|