Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,973 Bytes
6db35fc 8df522a 61c2d32 80ccb59 1527335 61c2d32 80ccb59 1527335 87d708c 61c2d32 80ccb59 8df522a 61c2d32 8df522a 61c2d32 4405af8 61c2d32 f9d01c1 61c2d32 80ccb59 983b029 80ccb59 8df522a 80ccb59 1527335 8df522a 1527335 8df522a 80ccb59 8df522a 80ccb59 1527335 8df522a 80ccb59 8df522a 80ccb59 8df522a 80ccb59 8df522a 80ccb59 61c2d32 80ccb59 1527335 8df522a 80ccb59 8df522a 61c2d32 80ccb59 8df522a 80ccb59 8df522a 80ccb59 8df522a 80ccb59 dae78dc 80ccb59 8df522a 80ccb59 8df522a 80ccb59 8df522a 80ccb59 61c2d32 8df522a 61c2d32 80ccb59 61c2d32 80ccb59 61c2d32 80ccb59 61c2d32 80ccb59 61c2d32 8df522a 61c2d32 8df522a 80ccb59 61c2d32 8df522a 61c2d32 2ec4f01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
from preprocess.detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
import os
import sys
import time
from glob import glob
from os.path import join as opj
from pathlib import Path
import gradio as gr
import torch
from omegaconf import OmegaConf
from PIL import Image
import spaces
from cldm.model import create_model
from cldm.plms_hacked import PLMSSampler
from utils_stableviton import get_mask_location, get_batch, tensor2img, center_crop
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
IMG_H = 1024
IMG_W = 768
openpose_model_hd = OpenPose(0)
openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
parsing_model_hd = Parsing(0)
densepose_model_hd = DensePose4Gradio(
cfg='preprocess/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml',
model='https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl',
)
category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
# #### model init >>>>
config = OmegaConf.load("./configs/VITON.yaml")
config.model.params.img_H = IMG_H
config.model.params.img_W = IMG_W
params = config.model.params
model = create_model(config_path=None, config=config)
model.load_state_dict(torch.load("./checkpoints/eternal_1024.ckpt", map_location="cpu")["state_dict"])
model = model.cuda()
model.eval()
sampler = PLMSSampler(model)
model2 = create_model(config_path=None, config=config)
model2.load_state_dict(torch.load("./checkpoints/VITONHD_1024.ckpt", map_location="cpu")["state_dict"])
model2 = model.cuda()
model2.eval()
sampler2 = PLMSSampler(model2)
# #### model init <<<<
@spaces.GPU
@torch.autocast("cuda")
@torch.no_grad()
def stable_viton_model_hd(
batch,
n_steps,
):
z, cond = model.get_input(batch, params.first_stage_key)
z = z
bs = z.shape[0]
c_crossattn = cond["c_crossattn"][0][:bs]
if c_crossattn.ndim == 4:
c_crossattn = model.get_learned_conditioning(c_crossattn)
cond["c_crossattn"] = [c_crossattn]
uc_cross = model.get_unconditional_conditioning(bs)
uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]}
uc_full["first_stage_cond"] = cond["first_stage_cond"]
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.cuda()
sampler.model.batch = batch
ts = torch.full((1,), 999, device=z.device, dtype=torch.long)
start_code = model.q_sample(z, ts)
torch.cuda.empty_cache()
output, _, _ = sampler.sample(
n_steps,
bs,
(4, IMG_H//8, IMG_W//8),
cond,
x_T=start_code,
verbose=False,
eta=0.0,
unconditional_conditioning=uc_full,
)
output = model.decode_first_stage(output)
output = tensor2img(output)
pil_output = Image.fromarray(output)
return pil_output
@torch.autocast("cuda")
@torch.no_grad()
def stable_viton_model_hd2(
batch,
n_steps,
):
z, cond = model2.get_input(batch, params.first_stage_key)
z = z
bs = z.shape[0]
c_crossattn = cond["c_crossattn"][0][:bs]
if c_crossattn.ndim == 4:
c_crossattn = model2.get_learned_conditioning(c_crossattn)
cond["c_crossattn"] = [c_crossattn]
uc_cross = model2.get_unconditional_conditioning(bs)
uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]}
uc_full["first_stage_cond"] = cond["first_stage_cond"]
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.cuda()
sampler2.model.batch = batch
ts = torch.full((1,), 999, device=z.device, dtype=torch.long)
start_code = model2.q_sample(z, ts)
torch.cuda.empty_cache()
output, _, _ = sampler2.sample(
n_steps,
bs,
(4, IMG_H//8, IMG_W//8),
cond,
x_T=start_code,
verbose=False,
eta=0.0,
unconditional_conditioning=uc_full,
)
output = model2.decode_first_stage(output)
output = tensor2img(output)
pil_output = Image.fromarray(output)
return pil_output
# @spaces.GPU # TODO: turn on when final upload
@torch.no_grad()
def process_hd(vton_img, garm_img, n_steps, is_custom):
model_type = 'hd'
category = 0 # 0:upperbody; 1:lowerbody; 2:dress
stt = time.time()
print('load images... ', end='')
# garm_img = Image.open(garm_img).resize((IMG_W, IMG_H))
# vton_img = Image.open(vton_img).resize((IMG_W, IMG_H))
garm_img = Image.open(garm_img)
vton_img = Image.open(vton_img)
vton_img = center_crop(vton_img)
garm_img = garm_img.resize((IMG_W, IMG_H))
vton_img = vton_img.resize((IMG_W, IMG_H))
print('%.2fs' % (time.time() - stt))
stt = time.time()
print('get agnostic map... ', end='')
keypoints = openpose_model_hd(vton_img.resize((IMG_W, IMG_H)))
model_parse, _ = parsing_model_hd(vton_img.resize((IMG_W, IMG_H)))
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints, radius=5)
mask = mask.resize((IMG_W, IMG_H), Image.NEAREST)
mask_gray = mask_gray.resize((IMG_W, IMG_H), Image.NEAREST)
masked_vton_img = Image.composite(mask_gray, vton_img, mask) # agnostic map
print('%.2fs' % (time.time() - stt))
# breakpoint()
stt = time.time()
print('get densepose... ', end='')
vton_img = vton_img.resize((IMG_W, IMG_H)) # size for densepose
densepose = densepose_model_hd.execute(vton_img) # densepose
print('%.2fs' % (time.time() - stt))
batch = get_batch(
vton_img,
garm_img,
densepose,
masked_vton_img,
mask,
IMG_H,
IMG_W
)
if is_custom:
sample = stable_viton_model_hd(
batch,
n_steps,
)
else:
sample = stable_viton_model_hd2(
batch,
n_steps,
)
return sample
example_path = opj(os.path.dirname(__file__), 'examples_eternal')
example_model_ps = sorted(glob(opj(example_path, "model/*")))
example_garment_ps = sorted(glob(opj(example_path, "garment/*")))
with gr.Blocks(css='style.css') as demo:
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1>Rdy2Wr.AI StableVITON Demo πππ</h1>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href='https://arxiv.org/abs/2312.01725'>
<img src="https://img.shields.io/badge/arXiv-2312.01725-red">
</a>
<a href='https://rlawjdghek.github.io/StableVITON/'>
<img src='https://img.shields.io/badge/page-github.io-blue.svg'>
</a>
<a href='https://github.com/rlawjdghek/StableVITON'>
<img src='https://img.shields.io/github/stars/rlawjdghek/StableVITON'>
</a>
<a href='https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode'>
<img src='https://img.shields.io/badge/license-CC_BY--NC--SA_4.0-lightgrey'>
</a>
</div>
</div>
</div>
"""
)
with gr.Row():
gr.Markdown("## Experience virtual try-on with your own images!")
with gr.Row():
with gr.Column():
vton_img = gr.Image(label="Model", type="filepath", height=384, value=example_model_ps[0])
example = gr.Examples(
inputs=vton_img,
examples_per_page=14,
examples=example_model_ps)
with gr.Column():
garm_img = gr.Image(label="Garment", type="filepath", height=384, value=example_garment_ps[0])
example = gr.Examples(
inputs=garm_img,
examples_per_page=14,
examples=example_garment_ps)
with gr.Column():
result_gallery = gr.Image(label='Output', show_label=False, preview=True, scale=1)
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)
with gr.Column():
run_button = gr.Button(value="Run")
n_steps = gr.Slider(label="Steps", minimum=10, maximum=50, value=20, step=1)
is_custom = gr.Checkbox(label="customized model")
# seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
ips = [vton_img, garm_img, n_steps, is_custom]
run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])
demo.queue().launch()
|