Spaces:
Runtime error
Runtime error
File size: 18,799 Bytes
634707c 8089056 634707c f7c60da 634707c 1d8708c 634707c 1d8708c 634707c 1d8708c 634707c 1d8708c 634707c 1d8708c 634707c 1d8708c 634707c 5bda15d 1d8708c 95bd107 1d8708c e077f7a 1d8708c 634707c 1d8708c 634707c 1d8708c e2c87f0 1d8708c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import pandas as pd
import streamlit as st
import datasets
import plotly.express as px
from sentence_transformers import SentenceTransformer, util
import os
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
import subprocess
st.set_page_config(layout="wide")
model_dir = "./models/sbert.net_models_sentence-transformers_clip-ViT-B-32-multilingual-v1"
@st.cache_data(show_spinner=True)
def download_models():
# Directory doesn't exist, download and extract the model
subprocess.run(["mkdir", "models"])
subprocess.run(["wget", "--no-check-certificate", "https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/clip-ViT-B-32-multilingual-v1.zip"], check=True)
subprocess.run(["unzip", "-q", "clip-ViT-B-32-multilingual-v1.zip", "-d", model_dir], check=True)
token = os.getenv('token')
@st.cache_data(show_spinner=True)
def load_dataset():
dataset = datasets.load_dataset('rjadr/ditaduranuncamais', split='train', use_auth_token=token)
dataset.add_faiss_index(column="txt_embs")
dataset.add_faiss_index(column="img_embs")
dataset = dataset.remove_columns(['Post Created','Post Created Time','Like and View Counts Disabled','Link','Photo','Title','Sponsor Id','Sponsor Name','Download URL', 'image', 'Views', 'text_full'])
return dataset
@st.cache_data(show_spinner=False)
def load_dataframe(_dataset):
dataframe = _dataset.remove_columns(['txt_embs', 'img_embs']).to_pandas()
dataframe['image_base64'] = dataframe['image_base64'].str.decode('utf-8')
dataframe['Overperforming Score (weighted β Likes 1x Comments 1x )'] = dataframe['Overperforming Score (weighted β Likes 1x Comments 1x )'].str.replace(',','').astype(float)
dataframe['Total Interactions'] = dataframe['Total Interactions'].str.replace(',','').astype(int)
return dataframe
@st.cache_resource(show_spinner=True)
def load_img_model():
# We use the original clip-ViT-B-32 for encoding images
return SentenceTransformer('clip-ViT-B-32')
@st.cache_resource(show_spinner=True)
def load_txt_model():
# Our text embedding model is aligned to the img_model and maps 50+
# languages to the same vector space
return SentenceTransformer('./models/sbert.net_models_sentence-transformers_clip-ViT-B-32-multilingual-v1')
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
modify = st.checkbox("Add filters")
if not modify:
return df
df = df.copy()
# Try to convert datetimes into a standard format (datetime, no timezone)
for col in df.columns:
if is_object_dtype(df[col]):
try:
df[col] = pd.to_datetime(df[col])
except Exception:
pass
if is_datetime64_any_dtype(df[col]):
df[col] = df[col].dt.tz_localize(None)
modification_container = st.container()
with modification_container:
to_filter_columns = st.multiselect("Filter dataframe on", df.columns)
for column in to_filter_columns:
left, right = st.columns((1, 20))
left.write("β³")
# Treat columns with < 10 unique values as categorical
if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
user_cat_input = right.multiselect(
f"Values for {column}",
df[column].unique(),
default=list(df[column].unique()),
)
df = df[df[column].isin(user_cat_input)]
elif is_numeric_dtype(df[column]):
_min = float(df[column].min())
_max = float(df[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
_min,
_max,
(_min, _max),
step=step,
)
df = df[df[column].between(*user_num_input)]
elif is_datetime64_any_dtype(df[column]):
user_date_input = right.date_input(
f"Values for {column}",
value=(
df[column].min(),
df[column].max(),
),
)
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
df = df.loc[df[column].between(start_date, end_date)]
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df = df[df[column].str.contains(user_text_input)]
return df
@st.cache_data
def get_image_embs(image):
"""
Get image embeddings
Parameters:
uploaded_file (PIL.Image): Uploaded image file
Returns:
img_emb (np.array): Image embeddings
"""
img_emb = image_model.encode(image)
return img_emb
@st.cache_data(show_spinner=False)
def get_text_embs(text):
"""
Get text embeddings
Parameters:
text (str): Text to encode
Returns:
text_emb (np.array): Text embeddings
"""
txt_emb = text_model.encode(text)
return txt_emb
@st.cache_data
def postprocess_results(scores, samples):
"""
Postprocess results to tuple of labels and scores
Parameters:
scores (np.array): Scores
samples (datasets.Dataset): Samples
Returns:
labels (list): List of tuples of PIL images and labels/scores
"""
samples_df = pd.DataFrame.from_dict(samples)
samples_df["score"] = scores
samples_df["score"] = (1 - (samples_df["score"] - samples_df["score"].min()) / (
samples_df["score"].max() - samples_df["score"].min())) * 100
samples_df["score"] = samples_df["score"].astype(int)
samples_df.reset_index(inplace=True, drop=True)
samples_df = samples_df[['Post Created Date', 'image_base64', 'Description', 'Image Text', 'Account', 'User Name'] + [col for col in samples_df.columns if col not in ['Post Created Date', 'image_base64', 'Description', 'Image Text', 'Account', 'User Name']]]
return samples_df.drop(columns=['txt_embs', 'img_embs'])
@st.cache_data
def text_to_text(text, k=5):
"""
Text to text
Parameters:
text (str): Input text
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
text_emb = get_text_embs(text)
scores, samples = dataset.get_nearest_examples('txt_embs', text_emb, k=k)
return postprocess_results(scores, samples)
@st.cache_data
def image_to_text(image, k=5):
"""
Image to text
Parameters:
image (str): Temp filepath to image
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
img_emb = get_image_embs(image.name)
scores, samples = dataset.get_nearest_examples('txt_embs', img_emb, k=k)
return postprocess_results(scores, samples)
@st.cache_data
def text_to_image(text, k=5):
"""
Text to image
Parameters:
text (str): Input text
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
text_emb = get_text_embs(text)
scores, samples = dataset.get_nearest_examples('img_embs', text_emb, k=k)
return postprocess_results(scores, samples)
@st.cache_data
def image_to_image(image, k=5):
"""
Image to image
Parameters:
image (str): Temp filepath to image
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
img_emb = get_image_embs(image.name)
scores, samples = dataset.get_nearest_examples('img_embs', img_emb, k=k)
return postprocess_results(scores, samples)
st.title("#ditaduranuncamais Data Explorer")
def check_password():
"""Returns `True` if the user had the correct password."""
def password_entered():
"""Checks whether a password entered by the user is correct."""
if st.session_state["password"] == st.secrets["password"]:
st.session_state["password_correct"] = True
del st.session_state["password"] # don't store password
else:
st.session_state["password_correct"] = False
if "password_correct" not in st.session_state:
# First run, show input for password.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
return False
elif not st.session_state["password_correct"]:
# Password not correct, show input + error.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
st.error("π Password incorrect")
return False
else:
# Password correct.
return True
if check_password():
# Check if the directory exists
if not os.path.exists(model_dir):
download_models()
dataset = load_dataset()
df = load_dataframe(dataset)
image_model = load_img_model()
text_model = load_txt_model()
tab1, tab2, tab3 = st.tabs(["Data exploration", "Semantic search", "Stats"])
with tab1:
# Initialization
if 'rows_per_page' not in st.session_state:
st.session_state['rows_per_page'] = 25
if 'page_number' not in st.session_state:
st.session_state['page_number'] = 1
filtered_df = filter_dataframe(df)
max_page = -(-len(filtered_df) // st.session_state['rows_per_page']) # ceiling division
start_index = st.session_state['rows_per_page'] * (st.session_state['page_number'] - 1)
end_index = start_index + st.session_state['rows_per_page']
sub_df = filtered_df.iloc[start_index:end_index]
# sort columms order: Post Created Date, image_base64, Description, Image Text, Account, User Name and then the rest
sub_df = sub_df[['Post Created Date', 'image_base64', 'Description', 'Image Text', 'Account', 'User Name'] + [col for col in sub_df.columns if col not in ['Post Created Date', 'image_base64', 'Description', 'Image Text', 'Account', 'User Name']]]
col1, col2, col3, col4 = st.columns(4)
with col4:
rows_per_page = st.selectbox('Rows per page', [25, 50, 75, 100, 150, 200], index=0, key='rows_per_page_select')
if rows_per_page != st.session_state['rows_per_page']:
st.session_state['rows_per_page'] = rows_per_page
st.session_state['page_number'] = 1 # Reset page number when rows per page changes
st.experimental_rerun()
with col2:
page_select = st.selectbox('Jump to page', options=range(1, max_page + 1), index=st.session_state['page_number']-1, key='page_number_select')
if page_select != st.session_state['page_number']:
st.session_state['page_number'] = page_select
st.experimental_rerun()
with col1:
if st.button('Previous'):
st.session_state['page_number'] = max(1, st.session_state['page_number'] - 1)
st.experimental_rerun()
with col3:
if st.button('Next'):
st.session_state['page_number'] = min(max_page, st.session_state['page_number'] + 1)
st.experimental_rerun()
st.dataframe(
data=sub_df,
column_config={
"image_base64": st.column_config.ImageColumn(
"image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"link", help="Instagram link", width="small"
)
},
# hide_index=True,
)
with tab2:
tabs = ["Text to Text", "Text to Image", "Image to Image", "Image to Text"]
selected_tab = st.radio("Select a search type", tabs)
if selected_tab == "Text to Text":
text_to_text_input = st.text_input("Enter text")
text_to_text_k_top = st.slider("Number of results", 1, 20, 8)
if st.button("Search"):
st.dataframe(
data=text_to_text(text_to_text_input, text_to_text_k_top),
column_config={
"image_base64": st.column_config.ImageColumn(
"image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_tab == "Text to Image":
text_to_image_input = st.text_input("Enter text")
text_to_image_k_top = st.slider("Number of results", 1, 20, 8)
if st.button("Search"):
st.dataframe(
data=text_to_image(text_to_image_input, text_to_image_k_top),
column_config={
"image_base64": st.column_config.ImageColumn(
"image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_tab == "Image to Image":
image_to_image_k_top = st.slider("Number of results", 1, 20, 8)
image_to_image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if st.button("Search"):
st.dataframe(
data=image_to_image(image_to_image_input, image_to_image_k_top),
column_config={
"image_base64": st.column_config.ImageColumn(
"image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_tab == "Image to Text":
image_to_text_k_top = st.slider("Number of results", 1, 20, 8)
image_to_text_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if st.button("Search"):
st.dataframe(
data=image_to_text(image_to_text_input, image_to_text_k_top),
column_config={
"image_base64": st.column_config.ImageColumn(
"image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"link", help="Instagram link", width="small"
)
},
hide_index=True,
)
with tab3:
st.markdown("### Time Series Analysis")
# Dropdown to select variables
variable = st.selectbox('Select Variable', ['Followers at Posting', 'Total Interactions', 'Likes', 'Comments'])
# Dropdown to select time resampling
resample_dict = {
'Day': 'D',
'Three Days': '3D',
'Week': 'W',
'Two Weeks': '2W',
'Month': 'M',
'Quarter': 'Q',
'Year': 'Y'
}
# Dropdown to select time resampling
resample_time = st.selectbox('Select Time Resampling', list(resample_dict.keys()))
df_filtered = df.set_index('Post Created Date')
# Slider for date range selection
min_date = df_filtered.index.min().date()
max_date = df_filtered.index.max().date()
date_range = st.slider('Select Date Range', min_value=min_date, max_value=max_date, value=(min_date, max_date))
# Filter dataframe based on selected date range
df_filtered = df_filtered[(df_filtered.index.date >= date_range[0]) & (df_filtered.index.date <= date_range[1])]
# Create a separate DataFrame for resampling and plotting
df_resampled = df_filtered[variable].resample(resample_dict[resample_time]).sum()
st.line_chart(df_resampled)
st.markdown("### Correlation Analysis")
# Dropdown to select variables for scatter plot
options = ['Followers at Posting', 'Total Interactions', 'Likes', 'Comments']
scatter_variable_1 = st.selectbox('Select Variable 1 for Scatter Plot', options)
# options.remove(scatter_variable_1) # remove the chosen option from the list
scatter_variable_2 = st.selectbox('Select Variable 2 for Scatter Plot', options)
# Plot scatter chart
st.write(f"Scatter Plot of {scatter_variable_1} vs {scatter_variable_2}")
# Plot scatter chart
scatter_fig = px.scatter(df_filtered, x=scatter_variable_1, y=scatter_variable_2) #, trendline='ols', trendline_color_override='red')
st.plotly_chart(scatter_fig)
# calculate correlation for scatter_variable_1 with scatter_variable_2
corr = df_filtered[scatter_variable_1].corr(df_filtered[scatter_variable_2])
if corr > 0.7:
st.write(f"The correlation coefficient is {corr}, indicating a strong positive relationship between {scatter_variable_1} and {scatter_variable_2}.")
elif corr > 0.3:
st.write(f"The correlation coefficient is {corr}, indicating a moderate positive relationship between {scatter_variable_1} and {scatter_variable_2}.")
elif corr > -0.3:
st.write(f"The correlation coefficient is {corr}, indicating a weak or no relationship between {scatter_variable_1} and {scatter_variable_2}.")
elif corr > -0.7:
st.write(f"The correlation coefficient is {corr}, indicating a moderate negative relationship between {scatter_variable_1} and {scatter_variable_2}.")
else:
st.write(f"The correlation coefficient is {corr}, indicating a strong negative relationship between {scatter_variable_1} and {scatter_variable_2}.")
|