Spaces:
Runtime error
Runtime error
File size: 45,103 Bytes
634707c 4470f0e 634707c 4470f0e d8cce8d 3ffc79c b751266 8089056 e94d0a2 634707c f7c60da 634707c 42da8d1 634707c f86eb7c 634707c 4470f0e 634707c 1d8708c d8cce8d 4470f0e 634707c 4470f0e 634707c 1d8708c 634707c 1d8708c 634707c 3ba5f94 634707c d8cce8d a4baf5c d8cce8d a4baf5c d8cce8d 3ffc79c 5bda15d 35ef9cd b173e2a 1e3e7b9 b173e2a 3ffc79c 51899f1 b173e2a 35ef9cd b173e2a 35ef9cd b173e2a 796986f b173e2a 92d6900 b173e2a 92d6900 b173e2a 4470f0e 3ba5f94 634707c 3ba5f94 634707c 4470f0e 92d6900 4470f0e 92d6900 4470f0e b173e2a 92d6900 b173e2a 4470f0e b173e2a 4470f0e b173e2a 92d6900 b173e2a 4470f0e b173e2a 4470f0e d8cce8d a4baf5c 441b396 a4baf5c d8cce8d a4baf5c d8cce8d 3ffc79c e94d0a2 3ffc79c e94d0a2 3ffc79c e94d0a2 3ffc79c e94d0a2 3ffc79c e94d0a2 3ffc79c e94d0a2 3ffc79c e94d0a2 3ffc79c e94d0a2 3ffc79c d8cce8d 35ef9cd b173e2a 1d8708c b173e2a d8cce8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 |
import pandas as pd
import streamlit as st
import datasets
import plotly.express as px
from sentence_transformers import SentenceTransformer
from PIL import Image
import os
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
import subprocess
from tempfile import NamedTemporaryFile
from itertools import combinations
import networkx as nx
import plotly.graph_objects as go
import colorcet as cc
from matplotlib.colors import rgb2hex
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import hdbscan
import umap
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource
from datetime import datetime
#st.set_page_config(layout="wide")
model_dir = "./models/sbert.net_models_sentence-transformers_clip-ViT-B-32-multilingual-v1"
@st.cache_data(show_spinner=True)
def download_models():
# Directory doesn't exist, download and extract the model
subprocess.run(["mkdir", "models"])
subprocess.run(["wget", "--no-check-certificate", "https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/clip-ViT-B-32-multilingual-v1.zip"], check=True)
subprocess.run(["unzip", "-q", "clip-ViT-B-32-multilingual-v1.zip", "-d", model_dir], check=True)
token_ = st.secrets["token"]
@st.cache_data(show_spinner=True)
def load_dataset():
dataset = datasets.load_dataset('rjadr/ditaduranuncamais', split='train', use_auth_token=token_)
dataset.add_faiss_index(column="txt_embs")
dataset.add_faiss_index(column="img_embs")
dataset = dataset.remove_columns(['Post Created Date', 'Post Created Time','Like and View Counts Disabled','Link','Download URL','Views'])
return dataset
@st.cache_data(show_spinner=False)
def load_dataframe(_dataset):
dataframe = _dataset.remove_columns(['txt_embs', 'img_embs']).to_pandas()
# Extract hashtags ith regex and convert to set
dataframe['Hashtags'] = dataframe.apply(lambda row: f"{row['Description']} {row['Image Text']}", axis=1)
dataframe['Hashtags'] = dataframe['Hashtags'].str.lower().str.findall(r'#(\w+)').apply(set)
# remove all hashtags that starts with 'throwback', 'thursday' or 'tbt' from the lists of hashtags per post
# dataframe['Hashtags'] = dataframe['Hashtags'].apply(lambda x: [item for item in x if not item.startswith('ditaduranuncamais')])
# dataframe['Post Created'] = dataframe['Post Created'].dt.tz_convert('UTC')
dataframe = dataframe[['Post Created', 'image', 'Description', 'Image Text', 'Account', 'User Name'] + [col for col in dataframe.columns if col not in ['Post Created', 'image', 'Description', 'Image Text', 'Account', 'User Name']]]
return dataframe
@st.cache_resource(show_spinner=True)
def load_img_model():
# We use the original clip-ViT-B-32 for encoding images
return SentenceTransformer('clip-ViT-B-32')
@st.cache_resource(show_spinner=True)
def load_txt_model():
# Our text embedding model is aligned to the img_model and maps 50+
# languages to the same vector space
return SentenceTransformer('./models/sbert.net_models_sentence-transformers_clip-ViT-B-32-multilingual-v1')
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
modify = st.checkbox("Add filters")
if not modify:
return df
df = df.copy()
# Try to convert datetimes into a standard format (datetime, no timezone)
for col in df.columns:
if is_object_dtype(df[col]):
try:
df[col] = pd.to_datetime(df[col])
except Exception:
pass
if is_datetime64_any_dtype(df[col]):
df[col] = df[col].dt.tz_localize(None)
modification_container = st.container()
with modification_container:
to_filter_columns = st.multiselect("Filter dataframe on", df.columns)
for column in to_filter_columns:
left, right = st.columns((1, 20))
left.write("↳")
# Treat columns with < 10 unique values as categorical
if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
user_cat_input = right.multiselect(
f"Values for {column}",
df[column].unique(),
default=list(df[column].unique()),
)
df = df[df[column].isin(user_cat_input)]
elif is_numeric_dtype(df[column]):
_min = float(df[column].min())
_max = float(df[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
_min,
_max,
(_min, _max),
step=step,
)
df = df[df[column].between(*user_num_input)]
elif is_datetime64_any_dtype(df[column]):
user_date_input = right.date_input(
f"Values for {column}",
value=(
df[column].min(),
df[column].max(),
),
)
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
df = df.loc[df[column].between(start_date, end_date)]
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df = df[df[column].str.contains(user_text_input)]
return df
@st.cache_data
def get_image_embs(image):
"""
Get image embeddings
Parameters:
uploaded_file (PIL.Image): Uploaded image file
Returns:
img_emb (np.array): Image embeddings
"""
img_emb = image_model.encode(Image.open(image))
return img_emb
@st.cache_data(show_spinner=False)
def get_text_embs(text):
"""
Get text embeddings
Parameters:
text (str): Text to encode
Returns:
text_emb (np.array): Text embeddings
"""
txt_emb = text_model.encode(text)
return txt_emb
@st.cache_data
def postprocess_results(scores, samples):
"""
Postprocess results to tuple of labels and scores
Parameters:
scores (np.array): Scores
samples (datasets.Dataset): Samples
Returns:
labels (list): List of tuples of PIL images and labels/scores
"""
samples_df = pd.DataFrame.from_dict(samples)
samples_df["score"] = scores
samples_df["score"] = (1 - (samples_df["score"] - samples_df["score"].min()) / (
samples_df["score"].max() - samples_df["score"].min())) * 100
samples_df["score"] = samples_df["score"].astype(int)
samples_df.reset_index(inplace=True, drop=True)
samples_df = samples_df[['Post Created', 'image', 'Description', 'Image Text', 'Account', 'User Name'] + [col for col in samples_df.columns if col not in ['Post Created', 'image', 'Description', 'Image Text', 'Account', 'User Name']]]
return samples_df.drop(columns=['txt_embs', 'img_embs'])
@st.cache_data
def text_to_text(text, k=5):
"""
Text to text
Parameters:
text (str): Input text
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
text_emb = get_text_embs(text)
scores, samples = dataset.get_nearest_examples('txt_embs', text_emb, k=k)
return postprocess_results(scores, samples)
@st.cache_data
def image_to_text(image, k=5):
"""
Image to text
Parameters:
image (str): Temp filepath to image
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
img_emb = get_image_embs(image.name)
scores, samples = dataset.get_nearest_examples('txt_embs', img_emb, k=k)
return postprocess_results(scores, samples)
@st.cache_data
def text_to_image(text, k=5):
"""
Text to image
Parameters:
text (str): Input text
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
text_emb = get_text_embs(text)
scores, samples = dataset.get_nearest_examples('img_embs', text_emb, k=k)
return postprocess_results(scores, samples)
@st.cache_data
def image_to_image(image, k=5):
"""
Image to image
Parameters:
image (str): Temp filepath to image
k (int): Number of top results to return
Returns:
results (list): List of tuples of PIL images and labels/scores
"""
img_emb = get_image_embs(image.name)
scores, samples = dataset.get_nearest_examples('img_embs', img_emb, k=k)
return postprocess_results(scores, samples)
def disparity_filter(g: nx.Graph, weight: str = 'weight', alpha: float = 0.05) -> nx.Graph:
"""
Computes the backbone of the input graph using the disparity filter algorithm.
The algorithm is proposed in:
M. A. Serrano, M. Boguna, and A. Vespignani,
"Extracting the Multiscale Backbone of Complex Weighted Networks",
PNAS, 106(16), pp 6483--6488 (2009).
DOI: 10.1073/pnas.0808904106
Implementation taken from https://groups.google.com/g/networkx-discuss/c/bCuHZ3qQ2po/m/QvUUJqOYDbIJ
Parameters
----------
g : NetworkX graph
The input graph.
weight : str, optional (default='weight')
The name of the edge attribute to use as weight.
alpha : float, optional (default=0.05)
The statistical significance level for the disparity filter (p-value).
Returns
-------
backbone_graph : NetworkX graph
The backbone graph.
"""
# Create an empty graph for the backbone
backbone_graph = nx.Graph()
# Iterate over all nodes in the input graph
for node in g:
# Get the degree of the node (number of edges connected to the node)
k_n = len(g[node])
# Only proceed if the node has more than one connection
if k_n > 1:
# Calculate the sum of weights of edges connected to the node
sum_w = sum(g[node][neighbor][weight] for neighbor in g[node])
# Iterate over all neighbors of the node
for neighbor in g[node]:
# Get the weight of the edge between the node and its neighbor
edge_weight = g[node][neighbor][weight]
# Calculate the proportion of the total weight that this edge represents
pij = float(edge_weight) / sum_w
# Perform the disparity filter test. If it passes, the edge is considered significant and is added to the backbone
if (1 - pij) ** (k_n - 1) < alpha:
backbone_graph.add_edge(node, neighbor, weight=edge_weight)
# Return the backbone graph
return backbone_graph
st.cache_data(show_spinner=True)
def assign_community_colors(G: nx.Graph, attr: str = 'community') -> dict:
"""
Assigns a unique color to each community in the input graph.
Parameters
----------
G : nx.Graph
The input graph.
attr : str, optional
The node attribute of the community names or indexes (default is 'community').
Returns
-------
dict
A dictionary mapping each community to a unique color.
"""
glasbey_colors = cc.glasbey_hv
communities_ = set(nx.get_node_attributes(G, attr).values())
return {community: rgb2hex(glasbey_colors[i % len(glasbey_colors)]) for i, community in enumerate(communities_)}
st.cache_data(show_spinner=True)
def generate_hover_text(G: nx.Graph, attr: str = 'community') -> list:
"""
Generates hover text for each node in the input graph.
Parameters
----------
G : nx.Graph
The input graph.
attr : str, optional
The node attribute of the community names or indexes (default is 'community').
Returns
-------
list
A list of strings containing the hover text for each node.
"""
return [f"Node: {str(node)}<br>Community: {G.nodes[node][attr] + 1}<br># of connections: {len(adjacencies)}" for node, adjacencies in G.adjacency()]
st.cache_data(show_spinner=True)
def calculate_node_sizes(G: nx.Graph) -> list:
"""
Calculates the size of each node in the input graph based on its degree.
Parameters
----------
G : nx.Graph
The input graph.
Returns
-------
list
A list of node sizes.
"""
degrees = dict(G.degree())
max_degree = max(deg for node, deg in degrees.items())
return [10 + 20 * (degrees[node] / max_degree) for node in G.nodes()]
@st.cache_data(show_spinner=True)
def plot_graph(_G: nx.Graph, layout: str = "fdp", community_names_lookup: dict = None):
"""
Plots a network graph with communities.
Parameters
----------
G : nx.Graph
The input graph.
layout : str, optional
The layout algorithm to use (default is "fdp").
"""
pos = nx.spring_layout(G_backbone, dim=3, seed=779)
community_colors = assign_community_colors(_G)
node_colors = [community_colors[_G.nodes[n]['community']] for n in _G.nodes]
edge_trace = go.Scatter(x=[item for sublist in [[pos[edge[0]][0], pos[edge[1]][0], None] for edge in _G.edges()] for item in sublist],
y=[item for sublist in [[pos[edge[0]][1], pos[edge[1]][1], None] for edge in _G.edges()] for item in sublist],
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines')
node_trace = go.Scatter(x=[pos[n][0] for n in _G.nodes()],
y=[pos[n][1] for n in _G.nodes()],
mode='markers',
hoverinfo='text',
marker=dict(color=node_colors, size=10, line_width=2))
node_trace.text = generate_hover_text(_G)
node_trace.marker.size = calculate_node_sizes(_G)
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(title='Network graph with communities',
titlefont=dict(size=16),
showlegend=False,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
height=800))
# Extract node positions
Xn=[pos[k][0] for k in G_backbone.nodes()] # x-coordinates of nodes
Yn=[pos[k][1] for k in G_backbone.nodes()] # y-coordinates
Zn=[pos[k][2] for k in G_backbone.nodes()] # z-coordinates
# Extract edge positions
Xe=[]
Ye=[]
Ze=[]
for e in G_backbone.edges():
Xe+=[pos[e[0]][0],pos[e[1]][0], None] # x-coordinates of edge ends
Ye+=[pos[e[0]][1],pos[e[1]][1], None]
Ze+=[pos[e[0]][2],pos[e[1]][2], None]
# Define traces for plotly
trace1=go.Scatter3d(x=Xe,
y=Ye,
z=Ze,
mode='lines',
line=dict(color='rgb(125,125,125)', width=1),
hoverinfo='none'
)
# Map community numbers to names
community_names = {i: community_names_lookup[f"Community {i+1}"] for i in range(len(communities))}
# Create hover text
hover_text = [f"{node} ({community_names[G_backbone.nodes[node]['community']]})" for node in G_backbone.nodes()]
trace2=go.Scatter3d(x=Xn,
y=Yn,
z=Zn,
mode='markers',
name='actors',
marker=dict(symbol='circle',
size=7,
color=node_colors, # pass hex colors
line=dict(color='rgb(50,50,50)', width=0.2)
),
text=hover_text, # Use community names as hover text
hoverinfo='text'
)
axis=dict(showbackground=False,
showline=False,
zeroline=False,
showgrid=False,
showticklabels=False,
title=''
)
layout = go.Layout(
title="3D Network Graph",
width=1000,
height=1000,
showlegend=False,
scene=dict(
xaxis=dict(axis),
yaxis=dict(axis),
zaxis=dict(axis),
),
margin=dict(
t=100
),
hovermode='closest',
)
data=[trace1, trace2]
fig=go.Figure(data=data, layout=layout)
return fig
@st.cache_data(show_spinner=True)
def cluster_embeddings(embeddings, clustering_algo='KMeans', dim_reduction='PCA', n_clusters=5, min_cluster_size=5, n_components=2, n_neighbors=15, min_dist=0.0, random_state=42, min_samples=5):
"""
A function to cluster embeddings.
Args:
embeddings (pd.Series): A series of numpy vectors.
clustering_algo (str): The clustering algorithm to use. Either 'KMeans' or 'HDBSCAN'.
dim_reduction (str): The dimensionality reduction method to use. Either 'PCA' or 'UMAP'.
n_clusters (int): The number of clusters for KMeans.
min_cluster_size (int): The minimum cluster size for HDBSCAN.
n_components (int): The number of components for the dimensionality reduction method.
n_neighbors (int): The number of neighbors for UMAP.
min_dist (float): The minimum distance for UMAP.
random_state (int): The seed used by the random number generator.
min_samples (int): The minimum number of samples for HDBSCAN.
Returns:
pd.Series: A series of cluster labels.
"""
# Dimensionality reduction
if dim_reduction == 'PCA':
reducer = PCA(n_components=n_components, random_state=random_state)
elif dim_reduction == 'UMAP':
reducer = umap.UMAP(n_neighbors=n_neighbors, min_dist=min_dist, n_components=n_components, random_state=random_state)
else:
raise ValueError('Invalid dimensionality reduction method')
reduced_embeddings = reducer.fit_transform(np.stack(embeddings))
# Clustering
if clustering_algo == 'KMeans':
clusterer = KMeans(n_clusters=n_clusters, random_state=random_state)
elif clustering_algo == 'HDBSCAN':
clusterer = hdbscan.HDBSCAN(min_cluster_size=min_cluster_size, min_samples=min_samples)
else:
raise ValueError('Invalid clustering algorithm')
labels = clusterer.fit_predict(reduced_embeddings)
return labels, reduced_embeddings
st.title("#ditaduranuncamais Data Explorer")
def check_password():
"""Returns `True` if the user had the correct password."""
def password_entered():
"""Checks whether a password entered by the user is correct."""
if st.session_state["password"] == st.secrets["password"]:
st.session_state["password_correct"] = True
del st.session_state["password"] # don't store password
else:
st.session_state["password_correct"] = False
if "password_correct" not in st.session_state:
# First run, show input for password.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
return False
elif not st.session_state["password_correct"]:
# Password not correct, show input + error.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
st.error("😕 Password incorrect")
return False
else:
# Password correct.
return True
if not check_password():
st.stop()
# Check if the directory exists
if not os.path.exists(model_dir):
download_models()
dataset = load_dataset()
df = load_dataframe(dataset)
image_model = load_img_model()
text_model = load_txt_model()
menu_options = ["Data exploration", "Semantic search", "Hashtags", "Clustering", "Stats"]
st.sidebar.markdown('# Menu')
selected_menu_option = st.sidebar.radio("Select a page", menu_options)
if selected_menu_option == "Data exploration":
st.dataframe(
data=filter_dataframe(df),
# use_container_width=True,
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_menu_option == "Semantic search":
tabs = ["Text to Text", "Text to Image", "Image to Image", "Image to Text"]
selected_tab = st.sidebar.radio("Select a search type", tabs)
if selected_tab == "Text to Text":
st.markdown('## Text to text search')
text_to_text_input = st.text_input("Enter text")
text_to_text_k_top = st.slider("Number of results", 1, 500, 20)
if st.button("Search"):
if not text_to_text_input:
st.warning("Please enter text")
else:
st.dataframe(
data=text_to_text(text_to_text_input, text_to_text_k_top),
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_tab == "Text to Image":
st.markdown('## Text to image search')
text_to_image_input = st.text_input("Enter text")
text_to_image_k_top = st.slider("Number of results", 1, 500, 20)
if st.button("Search"):
if not text_to_image_input:
st.warning("Please enter some text")
else:
st.dataframe(
data=text_to_image(text_to_image_input, text_to_image_k_top),
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_tab == "Image to Image":
st.markdown('## Image to image search')
image_to_image_k_top = st.slider("Number of results", 1, 500, 20)
image_to_image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
temp_file = NamedTemporaryFile(delete=False)
if st.button("Search"):
if not image_to_image_input:
st.warning("Please upload an image")
else:
temp_file.write(image_to_image_input.getvalue())
st.dataframe(
data=image_to_image(temp_file, image_to_image_k_top),
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_tab == "Image to Text":
st.markdown('## Image to text search')
image_to_text_k_top = st.slider("Number of results", 1, 500, 20)
image_to_text_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
temp_file = NamedTemporaryFile(delete=False)
if st.button("Search"):
if not image_to_text_input:
st.warning("Please upload an image")
else:
temp_file.write(image_to_text_input.getvalue())
st.dataframe(
data=image_to_text(temp_file, image_to_text_k_top),
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
elif selected_menu_option == "Hashtags":
if 'dfx' not in st.session_state:
st.session_state.dfx = df.copy() # Make a copy of dfx
# Get a list of all unique hashtags in the DataFrame
all_hashtags = list(set([item for sublist in st.session_state.dfx['Hashtags'].tolist() for item in sublist]))
st.sidebar.markdown('# Hashtag co-occurrence analysis options')
# Let users select hashtags to remove
hashtags_to_remove = st.sidebar.multiselect("Hashtags to remove", all_hashtags)
col1, col2 = st.sidebar.columns(2)
# Add a button to trigger the removal operation
if col1.button("Remove hashtags"):
# If dfx does not exist in session state, create it
st.session_state.dfx['Hashtags'] = st.session_state.dfx['Hashtags'].apply(lambda x: [item for item in x if item not in hashtags_to_remove])
# Add a reset button
if col2.button("Reset"):
st.session_state.dfx = df.copy() # Reset dfx to the original DataFrame
# Count the number of unique hashtags
hashtags = [item for sublist in st.session_state.dfx['Hashtags'].tolist() for item in sublist]
# Count the number of posts per hashtag
hashtag_freq = st.session_state.dfx.explode('Hashtags').groupby('Hashtags').size().reset_index(name='counts')
# Sort the hashtags by frequency
hashtag_freq = hashtag_freq.sort_values(by='counts', ascending=False)
# Make the scatter plot
hashtags_fig = px.scatter(hashtag_freq, x='Hashtags', y='counts', log_y=True, # Set log_y to True to make the plot more readable on a log scale
labels={'Hashtags': 'Hashtags', 'counts': 'Frequency'},
title='Frequency of hashtags in #throwbackthursday posts on Instagram',
height=600) # Set the height to 600 pixels
st.markdown("### Hashtag Frequency Distribution")
st.markdown('Here we apply hashtag co-occurence analysis for mnemonic community detection. This detects communities through creating a network of hashtag pairs (which hashtags are used together in which posts) and then applying community detection algorithms on this network.')
st.plotly_chart(hashtags_fig)
weight_option = st.sidebar.radio(
'Select weight definition',
('Number of users that use the hashtag pairs', 'Total number of occurrences')
)
hashtag_user_pairs = [(tuple(sorted(combination)), userid) for hashtags, userid in zip(st.session_state.dfx['Hashtags'], st.session_state.dfx['User Name']) for combination in combinations(hashtags, r=2)]
# Create a DataFrame with columns 'hashtag_pair' and 'userid'
hashtag_user_df = pd.DataFrame(hashtag_user_pairs, columns=['hashtag_pair', 'User Name'])
if weight_option == 'Number of users that use the hashtag pairs':
# Group by 'hashtag_pair' and count the number of unique 'userid's
hashtag_user_df = hashtag_user_df.groupby('hashtag_pair').agg({'User Name': 'nunique'}).reset_index()
elif weight_option == 'Total number of occurrences':
# Group by 'hashtag_pair' and count the total number of occurrences
hashtag_user_df = hashtag_user_df.groupby('hashtag_pair').size().reset_index(name='User Name')
# Make edge_list from hashtag_user_df with columns 'hashtag1', 'hashtag2', and 'weight'
edge_list = hashtag_user_df.rename(columns={'hashtag_pair': 'hashtag1', 'User Name': 'weight'})
edge_list[['hashtag1', 'hashtag2']] = pd.DataFrame(edge_list['hashtag1'].tolist(), index=edge_list.index)
edge_list = edge_list[['hashtag1', 'hashtag2', 'weight']]
st.markdown("### Edge List of Hashtag Pairs")
# Create the graph using the unique users as adge attributes
G = nx.from_pandas_edgelist(edge_list, 'hashtag1', 'hashtag2', 'weight')
G_backbone = disparity_filter(G, weight='weight', alpha=0.05)
st.markdown(f'Number of nodes {len(G_backbone.nodes)}')
st.markdown(f'Number of edges {len(G_backbone.edges)}')
st.dataframe(edge_list.sort_values(by='weight', ascending=False).head(10).style.set_caption("Edge list of hashtag pairs with the highest weight"))
# Create louvain communities
communities = nx.community.louvain_communities(G_backbone, weight='weight', seed=1234)
communities = list(communities)
# Sort communities by size
communities.sort(key=len, reverse=True)
for i, community in enumerate(communities):
for node in community:
G_backbone.nodes[node]['community'] = i
# Sort community hashtags based on their weighted degree in the network
sorted_community_hashtags = [
[
hashtag
for hashtag, degree in sorted(
((h, G.degree(h, weight='weight')) for h in community),
key=lambda x: x[1],
reverse=True
)
]
for community in communities
]
# Convert the sorted_community_hashtags list into a DataFrame and transpose it
sorted_community_hashtags = pd.DataFrame(sorted_community_hashtags).T
# Rename the columns of sorted_community_hashtags DataFrame
sorted_community_hashtags.columns = [f'Community {i+1}' for i in range(len(sorted_community_hashtags.columns))]
st.markdown("### Hashtag Communities")
st.markdown(f'There are {len(communities)} communities in the graph.')
st.dataframe(sorted_community_hashtags)
# add a st.data_editor with Community 1, etc as index and a column "community names" that sets Community 1 etc as default value
st.markdown("### Community Names")
st.markdown("Edit the names of the communities in the table below so they show up in the visualisations.")
df_community_names = pd.DataFrame(sorted_community_hashtags.columns, columns=['community_names'], index=sorted_community_hashtags.columns)
df_community_names = st.data_editor(df_community_names)
# download the edited df_community_names as csv
st.download_button(
label="Download community names as csv",
data=df_community_names.to_csv().encode("utf-8"),
file_name="community_names.csv",
mime="text/csv",
)
#create dict with community names
community_names_lookup = df_community_names['community_names'].to_dict()
# implement time series analysis of size of communities over time using resample_dict
st.markdown("### Community Size Over Time")
st.markdown("Select communites to see their size over time.")
# selected_communities = st.multiselect('Select Communities', [f'Community {i+1}' for i in range(len(communities))], default=[f'Community {i+1}' for i in range(len(communities))])
selected_communities = st.multiselect('Select Communities', community_names_lookup.values(), default=community_names_lookup.values())
# Dropdown to select time resampling
resample_dict = {
'Day': 'D',
'Three Days': '3D',
'Week': 'W',
'Two Weeks': '2W',
'Month': 'M',
'Quarter': 'Q',
'Year': 'Y'
}
# Dropdown to select time resampling
resample_time = st.selectbox('Select Time Resampling', list(resample_dict.keys()), index=4)
df_communities = st.session_state.dfx.copy()
def community_dict(communities):
community_dict = {}
for i, community in enumerate(communities):
for node in community:
community_dict[node] = community_names_lookup[f'Community {i+1}']
return community_dict
community_dict = community_dict(communities)
df_communities['Communities'] = df_communities['Hashtags'].apply(lambda x: [community_dict[tag] for tag in x if tag in community_dict.keys()])
df_communities = df_communities[['Post Created', 'Communities']].explode('Communities')
df_communities = df_communities.dropna(subset=['Communities'])
# Slider for date range selection
min_date = df_communities['Post Created'].min().date()
max_date = df_communities['Post Created'].max().date()
date_range = st.slider('Select Date Range', min_value=min_date, max_value=max_date, value=(min_date, max_date))
# Filter df_communities by the selected date range
df_communities = df_communities[(df_communities['Post Created'].dt.date >= date_range[0]) & (df_communities['Post Created'].dt.date <= date_range[1])]
# Count the number of posts per community per resample_time
df_communities['Post Created'] = df_communities['Post Created'].dt.to_period(resample_dict[resample_time])
df_community_sizes = df_communities.groupby(['Post Created', 'Communities']).size().unstack(fill_value=0)
df_community_sizes.index = df_community_sizes.index.to_timestamp()
# Filter the DataFrame to include only the selected communities
df_community_sizes = df_community_sizes[selected_communities]
st.plotly_chart(px.line(df_community_sizes, title='Community Size Over Time', labels={'value': 'Number of posts', 'index': 'Date', 'variable': 'Community'}))
st.markdown("### Hashtag Network Graph")
st.plotly_chart(plot_graph(G_backbone, layout="fdp", community_names_lookup=community_names_lookup)) # fdp is relatively slow, use 'sfdp' or 'neato' for faster but denser layouts
elif selected_menu_option == "Clustering":
st.markdown("## Clustering")
st.markdown("Select the type of embeddings to cluster and the clustering algorithm and dimensionality reduction method to use in the sidebar. Then click run clustering. Clustering may take some time.")
st.sidebar.markdown("# Clustering Options")
type_embeddings = st.sidebar.selectbox("Type of embeddings to cluster", ["Text", "Image"])
clustering_algo = st.sidebar.selectbox("Clustering algorithm", ["HDBSCAN", "KMeans"])
dim_reduction = st.sidebar.selectbox("Dimensionality reduction method", ["UMAP", "PCA"])
if clustering_algo == "KMeans":
st.sidebar.markdown("### KMeans Options")
n_clusters = st.sidebar.slider("Number of clusters", 2, 20, 5)
min_cluster_size = None
min_samples = None
elif clustering_algo == "HDBSCAN":
st.sidebar.markdown("### HDBSCAN Options")
min_cluster_size = st.sidebar.slider("[Minimum cluster size](https://hdbscan.readthedocs.io/en/latest/parameter_selection.html#selecting-min-cluster-size)", 2, 200, 5)
min_samples = st.sidebar.slider("[Minimum samples](https://hdbscan.readthedocs.io/en/latest/parameter_selection.html#selecting-min-samples)", 2, 50, 5)
n_clusters = None
if dim_reduction == "UMAP":
st.sidebar.markdown("### UMAP Options")
n_components = st.sidebar.slider("[Number of components](https://umap-learn.readthedocs.io/en/latest/parameters.html#n-components)", 2, 80, 50)
n_neighbors = st.sidebar.slider("[Number of neighbors](https://umap-learn.readthedocs.io/en/latest/parameters.html#n-neighbors)", 2, 20, 15)
min_dist = st.sidebar.slider("[Minimum distance](https://umap-learn.readthedocs.io/en/latest/parameters.html#min-dist)", 0.0, 1.0, 0.0)
else:
st.sidebar.markdown("### PCA Options")
n_components = st.sidebar.slider("[Number of components](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html)", 2, 80, 2)
n_neighbors = None
min_dist = None
st.markdown("### Clustering Results")
if type_embeddings == "Text":
embeddings = dataset['txt_embs']
elif type_embeddings == "Image":
embeddings = dataset['img_embs']
# Cluster embeddings
labels, reduced_embeddings = cluster_embeddings(embeddings, clustering_algo=clustering_algo, dim_reduction=dim_reduction, n_clusters=n_clusters, min_cluster_size=min_cluster_size, n_components=n_components, n_neighbors=n_neighbors, min_dist=min_dist)
st.markdown(f"Clustering {type_embeddings} embeddings using {clustering_algo} with {dim_reduction} dimensionality reduction method resulting in **{len(set(labels))}** clusters.")
df_clustered = df.copy()
df_clustered['cluster'] = labels
df_clustered = df_clustered.set_index('cluster').reset_index()
st.dataframe(
data=filter_dataframe(df_clustered),
# use_container_width=True,
column_config={
"image": st.column_config.ImageColumn(
"Image", help="Instagram image"
),
"URL": st.column_config.LinkColumn(
"Link", help="Instagram link", width="small"
)
},
hide_index=True,
)
st.download_button(
"Download dataset with labels",
df_clustered.to_csv(index=False).encode('utf-8'),
f'ditaduranuncamais_{datetime.now().strftime("%Y%m%d-%H%M%S")}.csv',
"text/csv",
key='download-csv'
)
st.markdown("### Cluster Plot")
# Plot the scatter plot in plotly with the cluster labels as colors reduce further to 2 dimensions if n_components > 2
if n_components > 2:
reducer = umap.UMAP(n_components=2, random_state=42)
reduced_embeddings = reducer.fit_transform(reduced_embeddings)
# set the labels to be the cluster labels dynamically
# visualise with bokeh showing df_clustered['Description'] and df_clustered['image'] on hover
descriptions = df_clustered['Description'].tolist()
images = df_clustered['image'].tolist()
glasbey_colors = cc.glasbey_hv
color_dict = {n: rgb2hex(glasbey_colors[i % len(glasbey_colors)]) for i, n in enumerate(set(labels))}
colors = [color_dict[label] for label in labels]
source = ColumnDataSource(data=dict(
x=reduced_embeddings[:, 0],
y=reduced_embeddings[:, 1],
desc=descriptions,
imgs=images,
colors=colors
))
TOOLTIPS = """
<div>
<div>
<img
src="@imgs" height="100" alt="@imgs" width="100"
style="float: left; margin: 0px 15px 15px 0px;"
border="2"
></img>
</div>
<div>
<span style="font-size: 12px; font-weight: bold;">@desc</span>
</div>
</div>
"""
p = figure(width=800, height=800, tooltips=TOOLTIPS,
title="Mouse over the dots")
p.circle('x', 'y', size=10, source=source, color='colors', line_color=None)
st.bokeh_chart(p)
# inster time series graph for clusters sorted by size (except cluster -1, show top5 by default, but include selectbox. reuse resample_dict for binning)
st.markdown("### Cluster Size")
cluster_sizes = df_clustered.groupby('cluster').size().reset_index(name='counts')
cluster_sizes = cluster_sizes.sort_values(by='counts', ascending=False)
cluster_sizes = cluster_sizes[cluster_sizes['cluster'] != -1]
cluster_sizes = cluster_sizes.set_index('cluster').reset_index()
cluster_sizes = cluster_sizes.rename(columns={'cluster': 'Cluster', 'counts': 'Size'})
st.dataframe(cluster_sizes)
st.markdown("### Cluster Time Series")
# Dropdown to select variables
variable = st.selectbox('Select Variable', ['Likes', 'Comments', 'Followers at Posting', 'Total Interactions'])
# Dropdown to select time resampling
resample_dict = {
'Day': 'D',
'Three Days': '3D',
'Week': 'W',
'Two Weeks': '2W',
'Month': 'M',
'Quarter': 'Q',
'Year': 'Y'
}
# Dropdown to select time resampling
resample_time = st.selectbox('Select Time Resampling', list(resample_dict.keys()))
# Slider for date range selection
min_date = df_clustered['Post Created'].min().date()
max_date = df_clustered['Post Created'].max().date()
date_range = st.slider('Select Date Range', min_value=min_date, max_value=max_date, value=(min_date, max_date))
# Filter dataframe based on selected date range
df_resampled = df_clustered[(df_clustered['Post Created'].dt.date >= date_range[0]) & (df_clustered['Post Created'].dt.date <= date_range[1])]
df_resampled = df_resampled.set_index('Post Created')
# Get unique clusters and their sizes
cluster_sizes = df_resampled[df_resampled['cluster'] != -1]['cluster'].value_counts()
clusters = cluster_sizes.index
# Select the largest 5 clusters by default
default_clusters = cluster_sizes.sort_values(ascending=False).head(5).index.tolist()
# Multiselect widget to choose clusters
selected_clusters = st.multiselect('Select Clusters', options=clusters.tolist(), default=default_clusters)
# Create a new DataFrame for the plot
df_plot = pd.DataFrame()
# Loop through selected clusters
for cluster in selected_clusters:
# Create a separate DataFrame for each cluster, resample and add to the plot DataFrame
df_cluster = df_resampled[df_resampled['cluster'] == cluster][variable].resample(resample_dict[resample_time]).sum()
df_plot = pd.concat([df_plot, df_cluster], axis=1)
# Add legend (use cluster numbers as legend)
df_plot.columns = selected_clusters
# Create the line chart
st.line_chart(df_plot)
elif selected_menu_option == "Stats":
st.markdown("### Time Series Analysis")
# Dropdown to select variables
variable = st.selectbox('Select Variable', ['Followers at Posting', 'Total Interactions', 'Likes', 'Comments'])
# Dropdown to select time resampling
resample_dict = {
'Day': 'D',
'Three Days': '3D',
'Week': 'W',
'Two Weeks': '2W',
'Month': 'M',
'Quarter': 'Q',
'Year': 'Y'
}
# Dropdown to select time resampling
resample_time = st.selectbox('Select Time Resampling', list(resample_dict.keys()))
df_filtered = df.set_index('Post Created')
# Slider for date range selection
min_date = df_filtered.index.min().date()
max_date = df_filtered.index.max().date()
date_range = st.slider('Select Date Range', min_value=min_date, max_value=max_date, value=(min_date, max_date))
# Filter dataframe based on selected date range
df_filtered = df_filtered[(df_filtered.index.date >= date_range[0]) & (df_filtered.index.date <= date_range[1])]
# Create a separate DataFrame for resampling and plotting
df_resampled = df_filtered[variable].resample(resample_dict[resample_time]).sum()
st.line_chart(df_resampled)
st.markdown("### Correlation Analysis")
# Dropdown to select variables for scatter plot
options = ['Followers at Posting', 'Total Interactions', 'Likes', 'Comments']
scatter_variable_1 = st.selectbox('Select Variable 1 for Scatter Plot', options)
# options.remove(scatter_variable_1) # remove the chosen option from the list
scatter_variable_2 = st.selectbox('Select Variable 2 for Scatter Plot', options)
# Plot scatter chart
st.write(f"Scatter Plot of {scatter_variable_1} vs {scatter_variable_2}")
# Plot scatter chart
scatter_fig = px.scatter(df_filtered, x=scatter_variable_1, y=scatter_variable_2) #, trendline='ols', trendline_color_override='red')
st.plotly_chart(scatter_fig)
# calculate correlation for scatter_variable_1 with scatter_variable_2
corr = df_filtered[scatter_variable_1].corr(df_filtered[scatter_variable_2])
if corr > 0.7:
st.write(f"The correlation coefficient is {corr}, indicating a strong positive relationship between {scatter_variable_1} and {scatter_variable_2}.")
elif corr > 0.3:
st.write(f"The correlation coefficient is {corr}, indicating a moderate positive relationship between {scatter_variable_1} and {scatter_variable_2}.")
elif corr > -0.3:
st.write(f"The correlation coefficient is {corr}, indicating a weak or no relationship between {scatter_variable_1} and {scatter_variable_2}.")
elif corr > -0.7:
st.write(f"The correlation coefficient is {corr}, indicating a moderate negative relationship between {scatter_variable_1} and {scatter_variable_2}.")
else:
st.write(f"The correlation coefficient is {corr}, indicating a strong negative relationship between {scatter_variable_1} and {scatter_variable_2}.") |