File size: 18,794 Bytes
634707c
 
 
 
 
 
 
 
 
 
 
 
 
 
8089056
 
634707c
 
 
 
 
f7c60da
634707c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d8708c
634707c
 
 
 
1d8708c
 
 
 
634707c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d8708c
634707c
 
 
 
 
 
 
 
 
 
 
1d8708c
634707c
 
 
 
 
 
 
 
 
 
 
 
 
1d8708c
 
 
 
634707c
1d8708c
634707c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d8708c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e077f7a
1d8708c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634707c
 
 
 
 
1d8708c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634707c
 
 
 
 
1d8708c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import pandas as pd
import streamlit as st
import datasets
import plotly.express as px
from sentence_transformers import SentenceTransformer, util
import os
from pandas.api.types import (
    is_categorical_dtype,
    is_datetime64_any_dtype,
    is_numeric_dtype,
    is_object_dtype,
)
import subprocess

st.set_page_config(layout="wide")

model_dir = "./models/sbert.net_models_sentence-transformers_clip-ViT-B-32-multilingual-v1"

@st.cache_data(show_spinner=True)
def download_models():
    # Directory doesn't exist, download and extract the model
    subprocess.run(["mkdir", "models"])
    subprocess.run(["wget", "--no-check-certificate", "https://public.ukp.informatik.tu-darmstadt.de/reimers/sentence-transformers/v0.2/clip-ViT-B-32-multilingual-v1.zip"], check=True)
    subprocess.run(["unzip", "-q", "clip-ViT-B-32-multilingual-v1.zip", "-d", model_dir], check=True)

# Check if the directory exists
if not os.path.exists(model_dir):
    download_models()

token = os.getenv('token')


@st.cache_data(show_spinner=True)
def load_dataset():
    dataset = datasets.load_dataset('rjadr/ditaduranuncamais', split='train', use_auth_token=token)
    dataset.add_faiss_index(column="txt_embs")
    dataset.add_faiss_index(column="img_embs")
    dataset = dataset.remove_columns(['Post Created','Post Created Time','Like and View Counts Disabled','Link','Photo','Title','Sponsor Id','Sponsor Name','Download URL', 'image', 'Views', 'text_full'])
    return dataset

@st.cache_data(show_spinner=False)
def load_dataframe(_dataset):
    dataframe = _dataset.remove_columns(['txt_embs', 'img_embs']).to_pandas()
    dataframe['image_base64'] = dataframe['image_base64'].str.decode('utf-8')
    dataframe['Overperforming Score (weighted  β€”  Likes 1x Comments 1x )'] = dataframe['Overperforming Score (weighted  β€”  Likes 1x Comments 1x )'].str.replace(',','').astype(float)
    dataframe['Total Interactions'] = dataframe['Total Interactions'].str.replace(',','').astype(int)
    return dataframe

@st.cache_resource(show_spinner=True)
def load_img_model():
    # We use the original clip-ViT-B-32 for encoding images
    return SentenceTransformer('clip-ViT-B-32')

@st.cache_resource(show_spinner=True)
def load_txt_model():
    # Our text embedding model is aligned to the img_model and maps 50+
    # languages to the same vector space
    return SentenceTransformer('./models/sbert.net_models_sentence-transformers_clip-ViT-B-32-multilingual-v1')

def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
    """
    Adds a UI on top of a dataframe to let viewers filter columns
    Args:
        df (pd.DataFrame): Original dataframe
    Returns:
        pd.DataFrame: Filtered dataframe
    """
    modify = st.checkbox("Add filters")

    if not modify:
        return df

    df = df.copy()

    # Try to convert datetimes into a standard format (datetime, no timezone)
    for col in df.columns:
        if is_object_dtype(df[col]):
            try:
                df[col] = pd.to_datetime(df[col])
            except Exception:
                pass

        if is_datetime64_any_dtype(df[col]):
            df[col] = df[col].dt.tz_localize(None)

    modification_container = st.container()

    with modification_container:
        to_filter_columns = st.multiselect("Filter dataframe on", df.columns)
        for column in to_filter_columns:
            left, right = st.columns((1, 20))
            left.write("↳")
            # Treat columns with < 10 unique values as categorical
            if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
                user_cat_input = right.multiselect(
                    f"Values for {column}",
                    df[column].unique(),
                    default=list(df[column].unique()),
                )
                df = df[df[column].isin(user_cat_input)]
            elif is_numeric_dtype(df[column]):
                _min = float(df[column].min())
                _max = float(df[column].max())
                step = (_max - _min) / 100
                user_num_input = right.slider(
                    f"Values for {column}",
                    _min,
                    _max,
                    (_min, _max),
                    step=step,
                )
                df = df[df[column].between(*user_num_input)]
            elif is_datetime64_any_dtype(df[column]):
                user_date_input = right.date_input(
                    f"Values for {column}",
                    value=(
                        df[column].min(),
                        df[column].max(),
                    ),
                )
                if len(user_date_input) == 2:
                    user_date_input = tuple(map(pd.to_datetime, user_date_input))
                    start_date, end_date = user_date_input
                    df = df.loc[df[column].between(start_date, end_date)]
            else:
                user_text_input = right.text_input(
                    f"Substring or regex in {column}",
                )
                if user_text_input:
                    df = df[df[column].str.contains(user_text_input)]

    return df

@st.cache_data
def get_image_embs(image):
    """
    Get image embeddings
    Parameters:
    uploaded_file (PIL.Image): Uploaded image file
    Returns:
    img_emb (np.array): Image embeddings
    """
    img_emb = image_model.encode(image)
    return img_emb

@st.cache_data(show_spinner=False)
def get_text_embs(text):
    """
    Get text embeddings
    Parameters:
    text (str): Text to encode
    Returns:
    text_emb (np.array): Text embeddings
    """
    txt_emb = text_model.encode(text)
    return txt_emb

@st.cache_data
def postprocess_results(scores, samples):
    """
    Postprocess results to tuple of labels and scores
    Parameters:
    scores (np.array): Scores
    samples (datasets.Dataset): Samples
    Returns:
    labels (list): List of tuples of PIL images and labels/scores
    """
    samples_df = pd.DataFrame.from_dict(samples)
    samples_df["score"] = scores
    samples_df["score"] = (1 - (samples_df["score"] - samples_df["score"].min()) / (
            samples_df["score"].max() - samples_df["score"].min())) * 100
    samples_df["score"] = samples_df["score"].astype(int)
    samples_df.reset_index(inplace=True, drop=True)
    samples_df = samples_df[['Post Created Date', 'image_base64', 'Description', 'Image Text', 'Account', 'User Name'] + [col for col in samples_df.columns if col not in ['Post Created Date', 'image_base64', 'Description', 'Image Text', 'Account', 'User Name']]]  
    return samples_df.drop(columns=['txt_embs', 'img_embs'])

@st.cache_data
def text_to_text(text, k=5):
    """
    Text to text
    Parameters:
    text (str): Input text
    k (int): Number of top results to return
    Returns:
    results (list): List of tuples of PIL images and labels/scores
    """
    text_emb = get_text_embs(text)
    scores, samples = dataset.get_nearest_examples('txt_embs', text_emb, k=k)
    return postprocess_results(scores, samples)

@st.cache_data
def image_to_text(image, k=5):
    """
    Image to text
    Parameters:
    image (str): Temp filepath to image
    k (int): Number of top results to return
    Returns:
    results (list): List of tuples of PIL images and labels/scores
    """
    img_emb = get_image_embs(image.name)
    scores, samples = dataset.get_nearest_examples('txt_embs', img_emb, k=k)
    return postprocess_results(scores, samples)

@st.cache_data
def text_to_image(text, k=5):
    """
    Text to image
    Parameters:
    text (str): Input text
    k (int): Number of top results to return
    Returns:
    results (list): List of tuples of PIL images and labels/scores
    """
    text_emb = get_text_embs(text)
    scores, samples = dataset.get_nearest_examples('img_embs', text_emb, k=k)
    return postprocess_results(scores, samples)

@st.cache_data
def image_to_image(image, k=5):
    """
    Image to image
    Parameters:
    image (str): Temp filepath to image
    k (int): Number of top results to return
    Returns:
    results (list): List of tuples of PIL images and labels/scores
    """
    img_emb = get_image_embs(image.name)
    scores, samples = dataset.get_nearest_examples('img_embs', img_emb, k=k)
    return postprocess_results(scores, samples)

def check_password():
    """Returns `True` if the user had the correct password."""

    def password_entered():
        """Checks whether a password entered by the user is correct."""
        if st.session_state["password"] == st.secrets["password"]:
            st.session_state["password_correct"] = True
            del st.session_state["password"]  # don't store password
        else:
            st.session_state["password_correct"] = False

    if "password_correct" not in st.session_state:
        # First run, show input for password.
        st.text_input(
            "Password", type="password", on_change=password_entered, key="password"
        )
        return False
    elif not st.session_state["password_correct"]:
        # Password not correct, show input + error.
        st.text_input(
            "Password", type="password", on_change=password_entered, key="password"
        )
        st.error("πŸ˜• Password incorrect")
        return False
    else:
        # Password correct.
        return True

if check_password():

    dataset = load_dataset()
    df = load_dataframe(dataset)
    image_model = load_img_model()
    text_model = load_txt_model()
    
    st.title("#ditaduranuncamais Data Explorer")
    
    tab1, tab2, tab3 = st.tabs(["Data exploration", "Semantic search", "Stats"])
    
    with tab1:
        # Initialization
        if 'rows_per_page' not in st.session_state:
            st.session_state['rows_per_page'] = 25
        if 'page_number' not in st.session_state:
            st.session_state['page_number'] = 1
    
        filtered_df = filter_dataframe(df)
        max_page = -(-len(filtered_df) // st.session_state['rows_per_page'])  # ceiling division
    
        start_index = st.session_state['rows_per_page'] * (st.session_state['page_number'] - 1)
        end_index = start_index + st.session_state['rows_per_page']
        sub_df = filtered_df.iloc[start_index:end_index]
        # sort columms order: Post Created Date, image_base64, Description, Image Text, Account, User Name and then the rest
        sub_df = sub_df[['Post Created Date', 'image_base64', 'Description', 'Image Text', 'Account', 'User Name'] + [col for col in sub_df.columns if col not in ['Post Created Date', 'image_base64', 'Description', 'Image Text', 'Account', 'User Name']]]
    
        col1, col2, col3, col4 = st.columns(4)
    
        with col4:
            rows_per_page = st.selectbox('Rows per page', [25, 50, 75, 100, 150, 200], index=0, key='rows_per_page_select')
            if rows_per_page != st.session_state['rows_per_page']:
                st.session_state['rows_per_page'] = rows_per_page
                st.session_state['page_number'] = 1  # Reset page number when rows per page changes
                st.experimental_rerun()
    
        with col2:
            page_select = st.selectbox('Jump to page', options=range(1, max_page + 1), index=st.session_state['page_number']-1, key='page_number_select')
            if page_select != st.session_state['page_number']:
                st.session_state['page_number'] = page_select
                st.experimental_rerun()
    
        with col1:
            if st.button('Previous'):
                st.session_state['page_number'] = max(1, st.session_state['page_number'] - 1)
                st.experimental_rerun()
    
        with col3:
            if st.button('Next'):
                st.session_state['page_number'] = min(max_page, st.session_state['page_number'] + 1)
                st.experimental_rerun()
    
        st.dataframe(
            data=sub_df,
            column_config={
                "image_base64": st.column_config.ImageColumn(
                    "image", help="Instagram image"
                ),
                "URL": st.column_config.LinkColumn(
                    "link", help="Instagram link", width="small"
                )
            },
            # hide_index=True,
        )
    
    
    with tab2:
        tabs = ["Text to Text", "Text to Image", "Image to Image", "Image to Text"]
        selected_tab = st.radio("Select a search type", tabs)
    
        if selected_tab == "Text to Text":
            text_to_text_input = st.text_input("Enter text")
            text_to_text_k_top = st.slider("Number of results", 1, 20, 8)
            if st.button("Search"):
                st.dataframe(
                    data=text_to_text(text_to_text_input, text_to_text_k_top),
                    column_config={
                    "image_base64": st.column_config.ImageColumn(
                        "image", help="Instagram image"
                    ),
                    "URL": st.column_config.LinkColumn(
                        "link", help="Instagram link", width="small"
                    )
                    },
                    hide_index=True,
                )   
                
        elif selected_tab == "Text to Image":
            text_to_image_input = st.text_input("Enter text")
            text_to_image_k_top = st.slider("Number of results", 1, 20, 8)
            if st.button("Search"):
                st.dataframe(
                    data=text_to_image(text_to_image_input, text_to_image_k_top),
                    column_config={
                        "image_base64": st.column_config.ImageColumn(
                            "image", help="Instagram image"
                        ),
                        "URL": st.column_config.LinkColumn(
                            "link", help="Instagram link", width="small"
                        )
                    },
                    hide_index=True,
                )
    
        elif selected_tab == "Image to Image":
            image_to_image_k_top = st.slider("Number of results", 1, 20, 8)
            image_to_image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
            if st.button("Search"):
                st.dataframe(
                    data=image_to_image(image_to_image_input, image_to_image_k_top),
                    column_config={
                        "image_base64": st.column_config.ImageColumn(
                            "image", help="Instagram image"
                        ),
                        "URL": st.column_config.LinkColumn(
                            "link", help="Instagram link", width="small"
                        )
                    },
                    hide_index=True,
                )
    
        elif selected_tab == "Image to Text":
            image_to_text_k_top = st.slider("Number of results", 1, 20, 8)
            image_to_text_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
            if st.button("Search"):
                st.dataframe(
                    data=image_to_text(image_to_text_input, image_to_text_k_top),
                    column_config={
                        "image_base64": st.column_config.ImageColumn(
                            "image", help="Instagram image"
                        ),
                        "URL": st.column_config.LinkColumn(
                            "link", help="Instagram link", width="small"
                        )
                    },
                    hide_index=True,
                )   
                
    with tab3:
        st.markdown("### Time Series Analysis")
        # Dropdown to select variables
        variable = st.selectbox('Select Variable', ['Followers at Posting', 'Total Interactions', 'Likes', 'Comments'])
    
        # Dropdown to select time resampling
        resample_dict = {
            'Day': 'D',
            'Three Days': '3D',
            'Week': 'W',
            'Two Weeks': '2W',
            'Month': 'M',
            'Quarter': 'Q',
            'Year': 'Y'
        }
    
        # Dropdown to select time resampling
        resample_time = st.selectbox('Select Time Resampling', list(resample_dict.keys()))
    
        df_filtered = df.set_index('Post Created Date')
    
        # Slider for date range selection
        min_date = df_filtered.index.min().date()
        max_date = df_filtered.index.max().date()
    
        date_range = st.slider('Select Date Range', min_value=min_date, max_value=max_date, value=(min_date, max_date))
    
        # Filter dataframe based on selected date range
        df_filtered = df_filtered[(df_filtered.index.date >= date_range[0]) & (df_filtered.index.date <= date_range[1])]
    
        # Create a separate DataFrame for resampling and plotting
        df_resampled = df_filtered[variable].resample(resample_dict[resample_time]).sum()
        st.line_chart(df_resampled)
    
        st.markdown("### Correlation Analysis")
        # Dropdown to select variables for scatter plot
        options = ['Followers at Posting', 'Total Interactions', 'Likes', 'Comments']
        scatter_variable_1 = st.selectbox('Select Variable 1 for Scatter Plot', options)
       # options.remove(scatter_variable_1)  # remove the chosen option from the list
        scatter_variable_2 = st.selectbox('Select Variable 2 for Scatter Plot', options)
    
        # Plot scatter chart
        st.write(f"Scatter Plot of {scatter_variable_1} vs {scatter_variable_2}")
        # Plot scatter chart
        scatter_fig = px.scatter(df_filtered, x=scatter_variable_1, y=scatter_variable_2, trendline='ols', trendline_color_override='red')
        
        st.plotly_chart(scatter_fig)
    
        # calculate correlation for scatter_variable_1 with scatter_variable_2
        corr = df_filtered[scatter_variable_1].corr(df_filtered[scatter_variable_2])
        if corr > 0.7:
            st.write(f"The correlation coefficient is {corr}, indicating a strong positive relationship between {scatter_variable_1} and {scatter_variable_2}.")
        elif corr > 0.3:
            st.write(f"The correlation coefficient is {corr}, indicating a moderate positive relationship between {scatter_variable_1} and {scatter_variable_2}.")
        elif corr > -0.3:
            st.write(f"The correlation coefficient is {corr}, indicating a weak or no relationship between {scatter_variable_1} and {scatter_variable_2}.")
        elif corr > -0.7:
            st.write(f"The correlation coefficient is {corr}, indicating a moderate negative relationship between {scatter_variable_1} and {scatter_variable_2}.")
        else:
            st.write(f"The correlation coefficient is {corr}, indicating a strong negative relationship between {scatter_variable_1} and {scatter_variable_2}.")