File size: 40,949 Bytes
314d23b
 
 
 
 
 
 
 
000cc20
 
314d23b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972

#made by Ryan Joseph
from datetime import date
from datetime import datetime
import requests
import streamlit as st
import plotly.express as px
import pandas as pd
from courtCoordinates import CourtCoordinates
from basketballShot import BasketballShot
import pandas as pd
from sportsdataverse.nba.nba_pbp import espn_nba_pbp
import plotly.graph_objects as go  # Import Plotly graph objects separately
import time
import re
import sportsdataverse
from streamlit_plotly_events import plotly_events
from datetime import datetime, timedelta

def display_player_image(player_id, width2, caption2):
    # Construct the URL for the player image using the player ID
    image_url = f"https://a.espncdn.com/combiner/i?img=/i/headshots/nba/players/full/{player_id}.png&w=350&h=254"
    
    
    # Check if the image URL returns a successful response
    response = requests.head(image_url)
    
    if response.status_code == 200:
        # If image is available, display it
        st.markdown(
    f'<div style="display: flex; flex-direction: column; align-items: center;">'
    f'<img src="{image_url}" style="width: {width2}px;">'
    f'<p style="text-align: center; font-size: 20px;">{caption2}</p>'
    f'</div>',
    unsafe_allow_html=True
)
    
    
        # st.image(image_url, width=width2, caption=caption2)
    else:
        image_url = "https://cdn.nba.com/headshots/nba/latest/1040x760/fallback.png"
        st.markdown(
        f'<div style="display: flex; flex-direction: column; align-items: center;">'
        f'<img src="{image_url}" style="width: {width2}px;">'
        f'<p style="text-align: center;font-size: larger;">{"Image Unavailable"}</p>'
        f'</div>',
        unsafe_allow_html=True
    )

def filter_player_actions(df, player_names):
    # Combine player names into a single regex pattern
    pattern = '|'.join([rf'{name}\s+(made|make|missed|miss|makes|misses)' for name in player_names])
    
    # Apply the filter using regex matching
    filtered_df = df[df['text'].str.contains(pattern, flags=re.IGNORECASE, regex=True)]
    
    return filtered_df

def extract_number_from_string(s):
    # Regular expression pattern to find a number in the string
    pattern = r'\b\d+\b'
    
    # Using re.findall to get all numbers matching the pattern
    numbers = re.findall(pattern, s)
    
    # If numbers list is not empty, return the first number found (as a string)
    if numbers:
        return int(numbers[0])  # Convert the first number to an integer
    else:
        return 0  # Return 0 if no numbers were found

def fetch_and_save_nba_pbp(game_id, output_file):
    try:
        # Fetch play-by-play data
        pbp_data = espn_nba_pbp(game_id)

        # Extract plays information
        plays = pbp_data['plays']

        # Convert to DataFrame
        df_plays = pd.DataFrame(plays)

        # Save to CSV
        df_plays.to_csv(output_file, index=False)

        print(f"Successfully saved play-by-play data to {output_file}")
    except Exception as e:
        print(f"Error fetching or saving play-by-play data: {e}")

def map_team_to_abbreviation(team_name):
    team_mapping = {
        'Boston Celtics': 'bos',
        'Brooklyn Nets': 'bkn',
        'New York Knicks': 'ny',
        'Philadelphia 76ers': 'phi',
        'Toronto Raptors': 'tor',
        'Chicago Bulls': 'chi',
        'Cleveland Cavaliers': 'cle',
        'Detroit Pistons': 'det',
        'Indiana Pacers': 'ind',
        'Milwaukee Bucks': 'mil',
        'Denver Nuggets': 'den',
        'Minnesota Timberwolves': 'min',
        'Oklahoma City Thunder': 'okc',
        'Portland Trail Blazers': 'por',
        'Utah Jazz': 'utah',
        'Golden State Warriors': 'gs',
        'LA Clippers': 'lac',
        'Los Angeles Lakers': 'lal',
        'Phoenix Suns': 'phx',
        'Sacramento Kings': 'sac',
        'Atlanta Hawks': 'atl',
        'Charlotte Hornets': 'cha',
        'Miami Heat': 'mia',
        'Orlando Magic': 'orl',
        'Washington Wizards': 'wsh',
        'Dallas Mavericks': 'dal',
        'Houston Rockets': 'hou',
        'Memphis Grizzlies': 'mem',
        'New Orleans Pelicans': 'no',
        'San Antonio Spurs': 'sa'
    }
    
    return team_mapping.get(team_name, 'Unknown Team')

def display_team_image(teamname, width2):
    # Construct the URL for the player image using the player ID
    image_url = f"https://a.espncdn.com/combiner/i?img=/i/teamlogos/nba/500/{teamname}.png&scale=crop&cquality=40&location=origin&w=80&h=80"
    
    
    # Check if the image URL returns a successful response
    response = requests.head(image_url)
    
    if response.status_code == 200:
        # If image is available, display it
        st.markdown(
    f'<div style="display: flex; flex-direction: column; align-items: center;">'
    f'<img src="{image_url}" style="width: {width2}px;">'
    f'<p style="text-align: center; font-size: 20px;"></p>'
    f'</div>',
    unsafe_allow_html=True
)
    
    
        # st.image(image_url, width=width2, caption=caption2)
    else:
        image_url = "https://a.espncdn.com/combiner/i?img=/i/teamlogos/leagues/500/nba.png&w=250&h=250"
        st.markdown(
        f'<div style="display: flex; flex-direction: column; align-items: center;">'
        f'<img src="{image_url}" style="width: {width2}px;">'
        f'<p style="text-align: center;font-size: larger;">{"Image Unavailable"}</p>'
        f'</div>',
        unsafe_allow_html=True
    )



st.set_page_config(page_title="3D NBA Shot Visualizer", page_icon='https://i.imgur.com/3oGJTcf.png',layout="wide")
st.markdown(f'<h3 style="color: gray; text-align: center; font-size: 100px;">3D NBA Shot Visualizer</h3>', unsafe_allow_html=True)

st.sidebar.markdown('<div style="text-align: center;"><span style="font-size:30px;">3D NBA Shot Visualizer</span></div>', unsafe_allow_html=True)
st.sidebar.image("https://i.imgur.com/3oGJTcf.png")

input_csv = 'nba_play_by_play.csv'  # Replace with your actual CSV file path
output_csv = 'nba_play_by_play.csv'  # Replace with desired output file path


# Determine the current year
current_year = date.today().year

# Create a selectbox in Streamlit with options from 2002 to the current year
selected_season = st.selectbox('Select a season', [''] + list(range(2002, current_year + 1)), index=0)
if selected_season:
    st.sidebar.markdown('<div style="text-align: center;"><span style="font-size:20px;">Filters</span></div>', unsafe_allow_html=True)
    st.sidebar.subheader('')

    from sportsdataverse.nba.nba_loaders import load_nba_schedule
    
    # Load NBA schedule for the 2007 season
    nba_df = load_nba_schedule(seasons=[selected_season], return_as_pandas=True)
    
    # Print or inspect the loaded DataFrame
    nba_df.to_csv('season.csv')
    
    # Load the CSV file
    csv_file = 'season.csv'
    df = pd.read_csv(csv_file)
    games = []
    for index, row in df.iterrows():
        # Concatenate home team and away team names for the current row
        ddate2 = row['start_date']
        parsed_date2 = datetime.strptime(ddate2, "%Y-%m-%dT%H:%MZ")
    
        # Format the datetime object into the desired string format
        formatted_date2 = parsed_date2.strftime("%m/%d/%Y")
        typegame = row['notes_headline']
        if selected_season > 2003 and pd.isna(typegame):
            typegame = 'Regular Season' 
        elif selected_season <= 2003 and pd.isna(typegame):
            typegame = ''
        game = f"{row['away_display_name']} @ {row['home_display_name']} - {typegame} - {formatted_date2} - {row['game_id']}"
        # Append the concatenated string to the games list
        games.append(game)# Create a selectbox in Streamlit
    games = st.selectbox('Select game', [''] + games)
    parts = games.split('-')
    
    # Extract the last element (which contains the number) and strip any extra whitespace
    id = parts[-1].strip()
    st.write('')
    if id:
        date1 = parts[-2].strip()

        fdf = pd.read_csv('season.csv')
        filtered_df = fdf[fdf['game_id'] == id]
    
    # Assuming 'date' is the column you want to extract
        if not filtered_df.empty:
            ddate = filtered_df['date'].iloc[0]
            parsed_date = datetime.strptime(ddate, "%Y-%m-%dT%H:%MZ")
    
            # Format the datetime object into the desired string format
            formatted_date = parsed_date.strftime("%m/%d/%Y")
        fetch_and_save_nba_pbp(game_id=id,output_file=output_csv)
    
        df = pd.read_csv(input_csv)
    
        # Replace 1 with True and 0 with False in 'SHOT_MADE_FLAG' column
        team_id = df['homeTeamId'][1]
    
        # Write the modified DataFrame back to CSV
        # df.to_csv(output_csv, index=False)
        # Define a function to apply to each row
        def label_team(row):
            if row['team.id'] == team_id:
                return 'home'
            else:
                return 'away'
    
        # Apply the function to create a new column 'team'
        df['team'] = df.apply(label_team, axis=1)
        df['home_color'] = '0022B4'
        df['away_color'] = '99bfe5'
        df = df[df['shootingPlay'] == True]
        df = df[~df['type.text'].str.contains('free throw', case=False, na=False)]
        df['Shot Distance'] = df['text'].apply(extract_number_from_string)

    
    
        unique_periods = df['period.displayValue'].unique()
        uniqueshots = df['type.text'].unique()

        df.to_csv(output_csv, index=False)
        Make = st.sidebar.toggle('Make/Miss')
        if Make == 1:
            makemiss = st.sidebar.selectbox('',['Make','Miss'])
            if makemiss == 'Make':
                rmakemiss = True
            else:
                rmakemiss = False
        Quarter = st.sidebar.toggle('Quarter')
        if Quarter == 1:
            quart = st.sidebar.multiselect('',unique_periods)
        Player = st.sidebar.toggle('Players')
        if Player == 1:
            import sportsdataverse.nba.nba_game_rosters as nba_rosters
            roster_data = nba_rosters.espn_nba_game_rosters(game_id=id, return_as_pandas=True)
            roster_data = roster_data[roster_data['did_not_play'] != True]
            names = []
            for index, row2 in roster_data.iterrows():
                name = row2['full_name']
                team = row2['team_display_name']
                player = name + " - " + team
                names.append(player)
            # player_names = roster_data['full_name'].tolist()
            players = st.sidebar.multiselect('',names)
            player_names = []
            for player_info in players:
                # Split each player_info string by ' - ' to separate player name and team
                player_name = player_info.split(' - ')[0]
                player_names.append(player_name)

        Shottype = st.sidebar.toggle('Shot Type')
        if Shottype == 1:
            shottype = st.sidebar.multiselect('',uniqueshots)
        Points = st.sidebar.toggle('Points')
        if Points == 1:
            points = st.sidebar.selectbox('',['2','3'])
        Time = st.sidebar.toggle('Time')
        if Time == 1:
            timemin, timemax = st.sidebar.slider("Time Remaining (Minutes)", 0, 15, (0, 15))
        Shotdist = st.sidebar.toggle('Shot Distance')
        if Shotdist == 1:
            shotdistance_min, shotdistance_max = st.sidebar.slider("Shot Distance", 0, 94, (0, 94))
        
    
    
        df2 = pd.read_csv('nba_play_by_play.csv')
        last_hyphen_index = games.rfind('-')

        result = games[:last_hyphen_index].strip()
        st.markdown(f'<h3 style="color: gray;text-align:center;">{result}</h3>', unsafe_allow_html=True)
        # st.markdown(f'<h3 style="color: gray;text-align:center;">{df["homeTeamName"].iloc[0]} {df["homeTeamMascot"].iloc[0]} vs {df["awayTeamName"].iloc[0]} {df["awayTeamMascot"].iloc[0]}</h3>', unsafe_allow_html=True)
        st.subheader('')
        hometeam = df['homeTeamName'].iloc[0] + " " + df['homeTeamMascot'].iloc[0]
        awayteam = df['awayTeamName'].iloc[0] + " " + df['awayTeamMascot'].iloc[0]
        homeabbrev = map_team_to_abbreviation(hometeam)
        awayabbrev = map_team_to_abbreviation(awayteam)
        col1, col2 = st.columns(2)
        with col1:
            display_team_image(awayabbrev,300)
        with col2:
            display_team_image(homeabbrev,300)
    
    
        # # create a connection
        # @st.cache_resource
        # def create_session_object():
        #     connection_parameters = {
        #        "account": "<ACCOUNT>",
        #        "user": "<USER>",
        #        "password": "<PASSWORD>",
        #        "role": "<ROLE>",
        #        "warehouse": "<WAREHOUSE>",
        #        "database": "<DATABASE>",
        #        "schema": "<SCHEMA"
        #     }
        #     session = Session.builder.configs(connection_parameters).create()
        #     return session
    
        # session = create_session_object()
    
        # # query the data
        # @st.cache_data
        # def load_data(query):
        #     data = session.sql(query)
        #     return data.to_pandas()
            
        # play_by_play_query = """
        #     SELECT  sequence_number,
        #             coordinate_x,
        #             coordinate_y,
        #             team_id,
        #             text,
        #             scoring_play,
        #             case 
        #                 when team_id = home_team_id
        #                     then 'home'
        #                 else 'away'
        #             end as scoring_team,
        #             game_id
        #     FROM    play_by_play
        #     WHERE   shooting_play
        #     AND     score_value != 1  -- shot charts typically do not include free throws
        # """
    
        # schedule_query = """
        #     select  concat(away_display_name_short, ' @ ', home_display_name_short, ' - ', notes_headline) as game,
        #             game_id,
        #             home_color,
        #             away_color
        #     from    schedule
        #     order by game_id desc
        # """
    
        schedule_df = pd.read_csv('nba_play_by_play.csv')
        play_by_play_df = pd.read_csv('nba_play_by_play.csv')
        import sportsdataverse.nba as nba
        nba_teams_df = nba.espn_nba_teams(return_as_pandas=True)
        home = nba_teams_df[nba_teams_df['team_display_name'] == hometeam]
        away = nba_teams_df[nba_teams_df['team_display_name'] == awayteam]
        if home['team_color'].isna().all():
            home_color = 'black'
        else:
            home_color = home['team_color'].iloc[0]
            home_color = '#' + home_color
        if away['team_color'].isna().all():
            away_color = 'gray'
        else:
            away_color = away['team_color'].iloc[0]
            away_color = '#' + away_color
        if home['team_alternate_color'].isna().all():
            home_color2 = 'black'
        else:
            home_color2 = home['team_alternate_color'].iloc[0]
            home_color2 = '#' + home_color2
        if away['team_alternate_color'].isna().all():
            away_color2 = 'gray'
        else:
            away_color2 = away['team_alternate_color'].iloc[0]
            away_color2 = '#' + away_color2
    
    
        # create single selection option
        # schedule_options = schedule_df[['GAME','GAME_ID']].set_index('GAME_ID')['GAME'].to_dict()
        # game_selection = st.sidebar.selectbox('Select Game', schedule_options.keys(), format_func=lambda x:schedule_options[x])
    
        # filter game specific values
                
    
        game_shots_df = pd.read_csv('nba_play_by_play.csv')
        if Quarter:
            game_shots_df = game_shots_df[game_shots_df['period.displayValue'].isin(quart)]
        if Shotdist:
            game_shots_df = game_shots_df[(game_shots_df['Shot Distance'] >= shotdistance_min) & (game_shots_df['Shot Distance'] <= shotdistance_max)]
        if Player:
            game_shots_df = filter_player_actions(game_shots_df, player_names)
            # game_shots_df = game_shots_df[game_shots_df['text'].str.contains('|'.join(player_names), case=False, na=False)]
        if Shottype:
            game_shots_df = game_shots_df[game_shots_df['type.text'].isin(shottype)]
        if Points:
            game_shots_df = game_shots_df[game_shots_df['scoreValue'] == int(points)]
        if Time:
            game_shots_df = game_shots_df[(game_shots_df['clock.minutes'] >= timemin) & (game_shots_df['clock.minutes'] <= timemax)]
        if Make:
            game_shots_df = game_shots_df[game_shots_df['scoringPlay'] == rmakemiss]
        # st.title(game_text)
    
        color_mapping = {
            'home': home_color,
            'away': away_color
        }
    
        # draw court lines
        court = CourtCoordinates()
        court_lines_df = court.get_court_lines()
    
        fig = px.line_3d(
            data_frame=court_lines_df,
            x='x',
            y='y',
            z='z',
            line_group='line_group',
            color='color',
            color_discrete_map={
                'court': '#000000',
                'hoop': '#e47041',
                'net': '#D3D3D3',
                'backboard': 'gray'
            }
        )
        fig.update_traces(hovertemplate=None, hoverinfo='skip', showlegend=False)
    
        game_coords_df = pd.DataFrame()
        # generate coordinates for shot paths
        homecount = 0
        hometotal = 0
        awaycount = 0
        awaytotal = 0
        for index, row in game_shots_df.iterrows():
            if row['team.id'] == team_id:
                hometotal+=1
                if row['scoringPlay'] == True:
                    homecount+=1
            elif row['team.id'] != team_id:
                awaytotal+=1
                if row['scoringPlay'] == True:
                    awaycount+=1
            shot = BasketballShot(
                shot_start_x=row['coordinate.x'], 
                shot_start_y=row['coordinate.y'], 
                shot_id=row['sequenceNumber'],
                play_description=row['text'],
                shot_made=row['scoringPlay'],
                team=row['team'],
                quarter=row['period.displayValue'],
                time=row['clock.displayValue'])
                # quarter=row['period.displayValue'])
            shot_df = shot.get_shot_path_coordinates()
            game_coords_df = pd.concat([game_coords_df, shot_df])
    
        # draw shot paths
        color_map={'away':away_color,'home':home_color2}
    
        shot_path_fig = px.line_3d(
            data_frame=game_coords_df,
            x='x',
            y='y',
            z='z',
            line_group='line_id',
            color='team',
            color_discrete_map=color_map,
            custom_data=['description', 'z','quarter','time']
        )
    
        hovertemplate= '%{customdata[0]}<br>%{customdata[2]} - %{customdata[3]}<br>Height: %{customdata[1]} ft'


        hovertemplate2 = '%{customdata[0]}<br>%{customdata[2]} - %{customdata[3]}'
        shot_path_fig.update_traces(opacity=0.55, hovertemplate=hovertemplate, showlegend=False)
    
        # shot start scatter plots
        game_coords_start = game_coords_df[game_coords_df['shot_coord_index'] == 0]
        symbol_map={'made': 'circle-open', 'missed': 'cross'}
        color_map={'away':away_color2,'home':home_color}
        shot_start_fig = px.scatter_3d(
            data_frame=game_coords_start,
            x='x',
            y='y',
            z='z',
            custom_data=['description', 'z','quarter','time'],
            color='team',
            color_discrete_map=color_map,
            # color_discrete_map=color_mapping,
            
            symbol='shot_made',
            
            symbol_map=symbol_map
        )
        symbol_map2={'made': 'circle', 'missed': 'cross'}

        shot_start_fig2 = px.scatter_3d(
            data_frame=game_coords_start,
            x='x',
            y='y',
            z='z',
            custom_data=['description', 'z','quarter','time'],
            color='team',
            color_discrete_map=color_map,
            # color_discrete_map=color_mapping,
            
            symbol='shot_made',
            
            symbol_map=symbol_map2
        )
    
        shot_start_fig.update_traces(marker_size=10, hovertemplate=hovertemplate2)
        shot_start_fig2.update_traces(marker_size=7,hovertemplate=hovertemplate2)

    
        # add shot scatter plot to court plot
        for i in range(len(shot_start_fig.data)):
            fig.add_trace(shot_start_fig.data[i])
            fig.add_trace(shot_start_fig2.data[i])
        # add shot line plot to court plot
        for i in range(len(shot_path_fig.data)):
            fig.add_trace(shot_path_fig.data[i])
    
        # graph styling
        fig.update_traces(line=dict(width=5))
        fig.update_layout(    
            margin=dict(l=20, r=20, t=20, b=20),
            scene_aspectmode="data",
            height=600,
            scene_camera=dict(
                eye=dict(x=1.3, y=0, z=0.7)
            ),
            scene=dict(
                xaxis=dict(title='', showticklabels=False, showgrid=False),
                yaxis=dict(title='', showticklabels=False, showgrid=False),
                zaxis=dict(title='',  showticklabels=False, showgrid=False, showbackground=True, backgroundcolor='#d2a679'),
            ),
            showlegend=False,
            legend=dict(
                yanchor='top',
                y=0.05,
                x=0.2,
                xanchor='left',
                orientation='h',
                font=dict(size=15, color='gray'),
                bgcolor='rgba(0, 0, 0, 0)',
                title='',
                itemsizing='constant'
            )
        )
        # st.plotly_chart(fig, use_container_width=True)
        play = st.sidebar.button('Play by play')
        normalplot = st.sidebar.button('Normal Plot')
        if normalplot:
            st.experimental_rerun()

        if play:
            # Draw basketball court lines
            court = CourtCoordinates()
            court_lines_df = court.get_court_lines()
    
            fig = px.line_3d(
            data_frame=court_lines_df,
            x='x',
            y='y',
            z='z',
            line_group='line_group',
            color='color',
            color_discrete_map={
                'court': '#000000',
                'hoop': '#e47041',
                'net': '#D3D3D3',
                'backboard': 'gray'
            }
        )
            fig.update_traces(hovertemplate=None, hoverinfo='skip', showlegend=False)
            fig.update_traces(line=dict(width=5))
    
            # Apply layout settings
            fig.update_layout(    
                margin=dict(l=20, r=20, t=20, b=20),
                scene_aspectmode="data",
                height=600,
                scene_camera=dict(
                    eye=dict(x=1.5, y=0, z=0.2)
                ),
                scene=dict(
                    xaxis=dict(title='', showticklabels=False, showgrid=False),
                    yaxis=dict(title='', showticklabels=False, showgrid=False),
                    zaxis=dict(title='', showticklabels=False, showgrid=False, showbackground=True, backgroundcolor='#d2a679'),
                )
            )
    
            # Create a Streamlit placeholder for the plot
            placeholder = st.empty()
    
            # Prepare data filters
            filters = {
                'period.displayValue': quart if Quarter else None,
                'Shot Distance': (shotdistance_min, shotdistance_max) if Shotdist else None,
                'text': players if Player else None,
                # 'type.text': finaltype if Shottype else None,
                'scoreValue': int(points) if Points else None,
                'clock.minutes': (timemin, timemax) if Time else None
            }
    
            filtered_shot_df = df.copy()
    
            if Quarter:
                filtered_shot_df = filtered_shot_df[filtered_shot_df['period.displayValue'].isin(quart)]
            if Shotdist:
                filtered_shot_df = filtered_shot_df[(filtered_shot_df['Shot Distance'] >= shotdistance_min) & (filtered_shot_df['Shot Distance'] <= shotdistance_max)]
            if Player:
                filtered_shot_df = filter_player_actions(filtered_shot_df, player_names)
                # game_shots_df = game_shots_df[game_shots_df['text'].str.contains('|'.join(player_names), case=False, na=False)]
            if Shottype:
                filtered_shot_df = filtered_shot_df[filtered_shot_df['type.text'].isin(shottype)]
            if Points:
                filtered_shot_df = filtered_shot_df[filtered_shot_df['scoreValue'] == int(points)]
            if Time:
                filtered_shot_df = filtered_shot_df[(filtered_shot_df['clock.minutes'] >= timemin) & (filtered_shot_df['clock.minutes'] <= timemax)]
            if Make:
                filtered_shot_df = filtered_shot_df[filtered_shot_df['scoringPlay'] == rmakemiss]
        
            # Initialize an empty list to store trace objects
            traces = []
            message_placeholder = st.empty()
            message2 = st.empty()
            message3 = st.empty()
            messages = []
    
            game_coords_df = pd.DataFrame()  # Initialize empty DataFrame to store all shot coordinates
    
            traces = []
            message_placeholder = st.empty()
            message2 = st.empty()
            message3 = st.empty()
            messages = []
            
            for index, row in game_shots_df.iterrows():
                # Assuming BasketballShot class or function to generate shot coordinates
                shot = BasketballShot(
                    shot_start_x=row['coordinate.x'], 
                    shot_start_y=row['coordinate.y'], 
                    shot_id=row['sequenceNumber'],
                    play_description=row['text'],
                    shot_made=row['scoringPlay'],
                    team=row['team'],
                    quarter=row['period.displayValue'],
                    time=row['clock.displayValue'])
                
                shot_df = shot.get_shot_path_coordinates()
                game_coords_df = pd.concat([game_coords_df, shot_df])
    
                # Draw shot paths
                color_map = {'home': home_color2, 'away': away_color}
                shot_path_fig = px.line_3d(
                    data_frame=game_coords_df,
                    x='x',
                    y='y',
                    z='z',
                    line_group='line_id',
                    color='team',
                    color_discrete_map=color_map,
                    custom_data=['description', 'z', 'quarter', 'time']
                )
    
                hovertemplate = '%{customdata[0]}<br>%{customdata[2]} - %{customdata[3]}'
                shot_path_fig.update_traces(opacity=0.55, hovertemplate=hovertemplate, showlegend=False)
    
                # Draw shot start scatter plots
                game_coords_start = game_coords_df[game_coords_df['shot_coord_index'] == 0]
                symbol_map = {'made': 'circle-open', 'missed': 'cross'}
                color_map = {'home': home_color, 'away': away_color2}
                shot_start_fig = px.scatter_3d(
                    data_frame=game_coords_start,
                    x='x',
                    y='y',
                    z='z',
                    custom_data=['description', 'z', 'quarter', 'time'],
                    color='team',
                    color_discrete_map=color_map,
                    symbol='shot_made',
                    symbol_map=symbol_map,
                )
    
                shot_start_fig.update_traces(marker_size=10, hovertemplate=hovertemplate,showlegend=False)
    
                # Add shot scatter plot to the existing figure
                
    
                for trace in shot_start_fig.data:
                    fig.add_trace(trace)
    
                # Add shot line plot to the existing figure
                for trace in shot_path_fig.data:
                    fig.add_trace(trace)
    
                # Update layout and display the figure dynamically
                fig.update_traces(line=dict(width=5))
                message = row['text']
                message2 = row['period.displayValue']
                message3 = row['clock.displayValue']
                if row['scoringPlay'] == True:
                    finalmessage = f"✅ {message} - {message2}: {message3}"
                else:
                    finalmessage = f"❌ {message} - {message2}: {message3}"
                messages.append(finalmessage)
                placeholder.plotly_chart(fig, use_container_width=True)
                message_placeholder.text(message)
                if message == None:
                    st.text('')
                else:
                    message_placeholder.text(f'Latest shot: {message} - {message2}: {message3}')
                time.sleep(2)
            placeholder.plotly_chart(fig, use_container_width=True)
            coli1,coli2 = st.columns(2)
            if awaytotal != 0:
                awayper = (awaycount/awaytotal) * 100
                awayper = round(awayper,2)
            else:
                awayper = 0
            if hometotal != 0:
                homeper = (homecount/hometotal) * 100
                homeper = round(homeper,2)
            else:
                homeper = 0
            with coli1:
                st.markdown(f'<h3 style="text-align:center;">'
                f'<span style="color: {away_color2};">{df["awayTeamName"].iloc[0]} {df["awayTeamMascot"].iloc[0]}:</span> '
                f'<span style="color: {away_color};">{awaycount}/{awaytotal} ({awayper}%)</span> '
                f'</h3>', unsafe_allow_html=True)
            with coli2:
                st.markdown(f'<h3 style="text-align:center;">'
                f'<span style="color: {home_color2};">{df["homeTeamName"].iloc[0]} {df["homeTeamMascot"].iloc[0]}:</span> '
                f'<span style="color: {home_color};">{homecount}/{hometotal} ({homeper}%)</span> '
                f'</h3>', unsafe_allow_html=True)
            with st.expander('All Shots'):
                for msg in messages:
                    st.text(msg)
        else:
            selected_points = plotly_events(fig, click_event=True, hover_event=False,select_event=True)
            if selected_season >= 2015:
                st.caption("Click on a marker to view the highlight video")
    # Display the plot
                

            # Display selected points
            if selected_points:
                for point in selected_points:
                    # Extract point details
                    x_val = point.get('x', 'N/A')
                    y_val = point.get('y', 'N/A')
                    z_val = point.get('z', 'N/A')
                    curve_number = point.get('curveNumber', 'N/A')
                    point_number = point.get('pointNumber', 'N/A')
                    
                    # Find the corresponding description based on index
                    description = 'No description available'
                    if point_number < len(game_coords_df):
                        game_coords_df2 = game_coords_df[game_coords_df['x'] == x_val]
                        game_coords_df2 = game_coords_df2[game_coords_df2['y'] == y_val]
                    description = game_coords_df2['description'].iloc[0]
                    time = game_coords_df2['time'].iloc[0]
                    game2 = game_shots_df[game_shots_df['text'] == description]
                    game2 = game2[game2['time'] == time]
                    abbreviation = game2['homeTeamAbbrev'].iloc[0]
                    abbreviation2 = game2['awayTeamAbbrev'].iloc[0]
                    from nba_api.stats.static import teams
                    nba_teams = teams.get_teams()
                    # Select the dictionary for the Celtics, which contains their team ID
                    st.write(abbreviation)
                    if abbreviation == 'GS':
                        abbreviation = 'GSW'
                    elif abbreviation == 'NO':
                        abbreviation = 'NOP'
                    elif abbreviation == 'NY':
                        abbreviation = 'NYK'
                    team = [team for team in nba_teams if team['abbreviation'] == abbreviation][0]
                    teamidreal = team['id']
                    # st.write(teamidreal)
                    from nba_api.stats.endpoints import leaguegamefinder

                    # Query for games where the Celtics were playing
                    gamefinder = leaguegamefinder.LeagueGameFinder(team_id_nullable=teamidreal)
                    # The first DataFrame of those returned is what we want.
                    games = gamefinder.get_data_frames()[0]
                    games = games[games['MATCHUP'].str.contains(abbreviation2, na=False)]
                    # Convert to datetime object
    # Convert to datetime object
                    # st.write(game2)
                    playerid = int(game2['participants.0.athlete.id'].iloc[0])
                    date_obj = datetime.strptime(date1, '%m/%d/%Y')

                    # Convert to desired format
                    date2 = date_obj.strftime('%Y-%m-%d')

                    # Attempt to filter games by the original date
                    fgames = games[games['GAME_DATE'] == date2]

                    # Check if games DataFrame is empty
                    if fgames.empty:
                        # If no games found, subtract one day and filter again
                        new_date_obj = date_obj - timedelta(days=1)
                        date2 = new_date_obj.strftime('%Y-%m-%d')
                        
                        # Attempt to filter games by the new date
                        fgames = games[games['GAME_DATE'] == date2]
                    games = fgames
                    # st.write(date2)
                    # st.write(games)
                    game_id = games['GAME_ID'].iloc[0]
                    playid = game2['sequenceNumber'].iloc[0]
                    headers = {
                    'Host': 'stats.nba.com',
                    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:72.0) Gecko/20100101 Firefox/72.0',
                    'Accept': 'application/json, text/plain, */*',
                    'Accept-Language': 'en-US,en;q=0.5',
                    'Accept-Encoding': 'gzip, deflate, br',
                    'x-nba-stats-origin': 'stats',
                    'x-nba-stats-token': 'true',
                    'Connection': 'keep-alive',
                    'Referer': 'https://stats.nba.com/',
                    'Pragma': 'no-cache',
                    'Cache-Control': 'no-cache'
                }
                    event_id = playid



                    url = 'https://stats.nba.com/stats/videoeventsasset?GameEventID={}&GameID={}'.format(
                                event_id, game_id)
                    r = requests.get(url, headers=headers)
                    if r.status_code == 200:
                        json = r.json()
                        video_urls = json['resultSets']['Meta']['videoUrls']
                        playlist = json['resultSets']['playlist']
                        video_event = {'video': video_urls[0]['lurl'], 'desc': playlist[0]['dsc']}
                        video = video_urls[0]['lurl']

                    # Display point details
                    
                    # st.write(game2)
                    if selected_season >= 2015:
                        col1,col2, = st.columns(2)
                        with col1:
                            display_player_image(playerid,400,'')
                        with col2:
                            st.write(description)

                            st.video(video)
                    else:
                        st.write(description)
                        display_player_image(playerid,400,'')

    
        nba_data = sportsdataverse.nba.espn_nba_pbp(game_id=id)
        # Check if 'boxscore' exists in the fetched data
        df = nba_data['boxscore']

        teams = df['teams']
        players = df['players']
        def flatten_team_data(teams):
            flat_list = []
            for team in teams:
                team_info = team['team']
                stats = {stat['label']: stat['displayValue'] for stat in team['statistics']}
                stats.update({
                    'team_id': team_info['id'],
                    'team_location': team_info['location'],
                    'team_name': team_info['name'],
                    'team_abbreviation': team_info['abbreviation'],
                    'team_displayName': team_info['displayName'],
                    'homeAway': team['homeAway']
                })
                flat_list.append(stats)
            return pd.DataFrame(flat_list)

        # Apply the function to the data
        team_df = flatten_team_data(df['teams'])
        # team_df.to_csv('route_locations_2019.csv')

        def flatten_player_data(players):
            flat_list = []
            
            for team in players:
                team_info = team['team']
                stats_labels = team['statistics'][0]['labels']
                stats_keys = team['statistics'][0]['keys']
                
                for player in team['statistics'][0]['athletes']:
                    if player['stats']:
                        player_stats = {key: value for key, value in zip(stats_keys, player['stats'])}
                        player_info = player['athlete']
                        
                        player_data = {
                            'player_id': player_info['id'],
                            'player_name': player_info['displayName'],
                            'player_shortName': player_info['shortName'],
                            'player_position': player_info['position']['displayName'],
                            'team_id': team_info['id'],
                            'team_location': team_info['location'],
                            'team_name': team_info['name'],
                            'team_abbreviation': team_info['abbreviation'],
                            'team_displayName': team_info['displayName'],
                        }
                        
                        player_data.update({label: player_stats.get(key, '') for label, key in zip(stats_labels, stats_keys)})
                        
                        flat_list.append(player_data)
            
            return pd.DataFrame(flat_list)
        playerdf = flatten_player_data(players)
        st.subheader('Team Boxscore')
        team_df = team_df.drop(columns=['team_name','team_location','team_abbreviation','team_id'])
        team_df = team_df[['team_displayName'] + [col for col in team_df.columns if col != 'team_displayName']]
        st.write(team_df)
        st.subheader('Player Boxscore')
        st.write(playerdf[['player_name','team_displayName','player_position','MIN','FG','3PT','FT','OREB','DREB','REB','AST','STL','BLK','TO','PF','+/-','PTS']])



        # # Check if the data was fetched successfully and if 'videos' exists
        # if 'videos' in nba_data and nba_data['videos']:
        #     videos_data = nba_data['videos']
            
        #     # Convert to DataFrame
        #     if isinstance(videos_data, list):
        #         try:
        #             videos_df = pd.DataFrame(videos_data)
                    
        #             # Check if 'links' column exists
        #             if 'links' in videos_df.columns:
        #                 # Extract 'links' column
        #                 links_df = pd.json_normalize(videos_df['links'])
        #                 with st.expander('Videos'):
        #                     for index, row in links_df.iterrows():
        #                         link = row['source.HD.href']
        #                         st.video(link)
                        
        #                 # Print the new DataFrame to verify                        
        #                 # Optionally, save the links DataFrame to a CSV file
        #             else:
        #                 st.error("'links' column not found in the DataFrame.")
        #         except ValueError as e:
        #             print("Error creating DataFrame:", e)
        #     else:
        #         st.error("Expected a list of dictionaries or similar format.")
        # else:
        #     st.write("")
else:
    image_url = 'https://i.imgur.com/3oGJTcf.png'

    st.markdown(f'<img src="{image_url}" style="width:100%; height:auto;">', unsafe_allow_html=True)