File size: 7,533 Bytes
835448b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Movie Sentiment Analysis Model using Perceptron"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from tensorflow.keras.datasets import imdb\n",
    "import numpy as np\n",
    "from tqdm import tqdm\n",
    "from Perceptron import Perceptron\n",
    "from tensorflow.keras.preprocessing import sequence\n",
    "from sklearn.metrics import confusion_matrix, classification_report\n",
    "import pickle"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:00<00:00, 20.08it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Training Completed\n",
      "Accuracy: 50.00%\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "# Load the IMDB dataset\n",
    "top_words = 5000\n",
    "(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words)\n",
    "\n",
    "# Truncate and pad input sequences\n",
    "max_review_length = 500\n",
    "X_train = sequence.pad_sequences(X_train, maxlen=max_review_length)\n",
    "X_test = sequence.pad_sequences(X_test, maxlen=max_review_length)\n",
    "\n",
    "# Convert data to binary (0/1) for perceptron\n",
    "X_train_bin = np.where(X_train > 0, 1, 0)\n",
    "X_test_bin = np.where(X_test > 0, 1, 0)\n",
    "\n",
    "# Initialize and train the Perceptron\n",
    "perceptron = Perceptron(learning_rate=0.1, epochs=5)\n",
    "perceptron.fit(X_train_bin, y_train)\n",
    "\n",
    "# Evaluate on test data\n",
    "predictions = perceptron.predict(X_test_bin)\n",
    "accuracy = np.mean(predictions == y_test)\n",
    "print(\"Accuracy: {:.2f}%\".format(accuracy * 100))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Confusion Matrix:\n",
      "[[    0 12500]\n",
      " [    0 12500]]\n",
      "\n",
      "Classification Report:\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "           0       0.00      0.00      0.00     12500\n",
      "           1       0.50      1.00      0.67     12500\n",
      "\n",
      "    accuracy                           0.50     25000\n",
      "   macro avg       0.25      0.50      0.33     25000\n",
      "weighted avg       0.25      0.50      0.33     25000\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "d:\\STUDY\\Sem3\\deeplearning\\DLENV\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "d:\\STUDY\\Sem3\\deeplearning\\DLENV\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n",
      "d:\\STUDY\\Sem3\\deeplearning\\DLENV\\lib\\site-packages\\sklearn\\metrics\\_classification.py:1471: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
      "  _warn_prf(average, modifier, msg_start, len(result))\n"
     ]
    }
   ],
   "source": [
    "# Calculate confusion matrix\n",
    "cm = confusion_matrix(y_test, predictions)\n",
    "\n",
    "# Generate classification report\n",
    "report = classification_report(y_test, predictions)\n",
    "\n",
    "# Display confusion matrix and classification report\n",
    "print(\"Confusion Matrix:\")\n",
    "print(cm)\n",
    "print(\"\\nClassification Report:\")\n",
    "print(report)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Save the instance of the Perceptron class\n",
    "with open('perceptron_movie_model.pkl', 'wb') as file:\n",
    "    pickle.dump(perceptron, file)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "def predict_sentiment_perceptron(review, perceptron_model, max_review_length):\n",
    "    word_index = imdb.get_word_index()\n",
    "    review = review.lower().split()\n",
    "    review = [word_index[word] if (word in word_index and word_index[word] < top_words) else 0 for word in review]\n",
    "    review_bin = np.where(np.array(review) > 0, 1, 0)\n",
    "    # Padding or truncating the review to match the perceptron's input size\n",
    "    review_bin_padded = np.pad(review_bin, (0, max_review_length - len(review_bin)), 'constant')\n",
    "    prediction = perceptron_model.predict([review_bin_padded])\n",
    "    if prediction[0] == 1:\n",
    "        return \"Positive\"\n",
    "    else:\n",
    "        return \"Negative\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Predicted Sentiment: Positive\n"
     ]
    }
   ],
   "source": [
    "# Example usage after training the perceptron\n",
    "example_review = \"This movie was fantastic! I loved every bit of it.\"\n",
    "sentiment = predict_sentiment_perceptron(example_review, perceptron, max_review_length)\n",
    "print(\"Predicted Sentiment:\", sentiment)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Predicted Sentiment: Positive\n"
     ]
    }
   ],
   "source": [
    "# Example usage after training the perceptron\n",
    "example_review = \"This movie was bad!.\"\n",
    "sentiment = predict_sentiment_perceptron(example_review, perceptron, max_review_length)\n",
    "print(\"Predicted Sentiment:\", sentiment)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Predicted Sentiment: Positive\n"
     ]
    }
   ],
   "source": [
    "example_review = \"This movie was terrible. The acting was awful, and the plot was confusing.\"\n",
    "sentiment = predict_sentiment_perceptron(example_review, perceptron, max_review_length)\n",
    "print(\"Predicted Sentiment:\", sentiment)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "DLENV",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}