File size: 8,175 Bytes
6502634 203c01e 6502634 7f5317b 6502634 7f5317b 6502634 203c01e 6502634 ba62ec1 6502634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# -*- coding: utf-8 -*-
"""I/O 25: Radiology with MedGemma, Gemini Native TTS
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/#fileId=https%3A//storage.googleapis.com/kaggle-colab-exported-notebooks/rishirajacharya/i-o-25-radiology-with-medgemma-gemini-native-tts.b5cf5dca-3453-45b1-b7c0-ec7c22aedf1b.ipynb%3FX-Goog-Algorithm%3DGOOG4-RSA-SHA256%26X-Goog-Credential%3Dgcp-kaggle-com%2540kaggle-161607.iam.gserviceaccount.com/20250521/auto/storage/goog4_request%26X-Goog-Date%3D20250521T170634Z%26X-Goog-Expires%3D259200%26X-Goog-SignedHeaders%3Dhost%26X-Goog-Signature%3D4441930d90141e32bd35bf0fd9c6e0f2bd595d3f7bd8cc7bfba27ff7b748cbcc733510dcc0305f8c3287c046c839400e7dae360042459f12e4c3d17506d2b7216fa8d255dff5e5c32f9237a805460cb9bfd88ddf9e4667eaff48eb0f9fe329bd71acc2e6750ac73801f7ddcc55218bae1a50bf69cc93026abfa48ace82e44de442b3404141088839809add42482050efecbfd4e82b9bd154e28bb4e3c6fa765460abb8158d2006cc5989429408c0659c011e5b73fec46e6e384317c3305c16c6b0e1e69bb9f5872028a50cb676eae4a013f474e1c6f67bcda7eb52b8738450d88c8fb0c4b4e80c088004ba96e32dff67c91fbf53cbc4d38815f68c26e1a25793
# Google I/O 2025 Demo: Radiology with MedGemma & Gemini's Native TTS
## Built by [Rishiraj Acharya](https://www.linkedin.com/in/rishirajacharya/) (Google Developer Expert in Kaggle, Cloud, AI)
This demo showcases two of the exciting announcements from Google I/O 2025: **MedGemma** and **Gemini's native text-to-speech (TTS)**. It features a radiology voice assistant powered by MedGemma, which translates complex medical image reports into simple, understandable language. Combined with Gemini's natural-sounding TTS, the assistant provides an intuitive, voice-driven experience—highlighting key areas in radiology images and making medical insights more accessible.
### 🔐 Securing API Keys
We use secret tokens to authenticate with Hugging Face and Google’s Gemini APIs. This keeps our access safe and secure.
"""
import spaces
from google import genai
from google.genai import types
import os
# hf_token = os.getenv('HF_TOKEN')
# !huggingface-cli login --token $hf_token
gemini_api_key = os.getenv('GEMINI_API_KEY')
client = genai.Client(api_key=gemini_api_key)
"""### 🧠 Loading MedGemma for Radiology Insights
Here, we load the **MedGemma** model—an image-text model tuned for medical contexts. We use 4-bit quantization to optimize performance and memory usage on GPU.
"""
from transformers import pipeline, BitsAndBytesConfig
import torch
model_kwargs = dict(torch_dtype=torch.bfloat16, device_map="cuda:0", quantization_config=BitsAndBytesConfig(load_in_4bit=True))
pipe = pipeline("image-text-to-text", model="google/medgemma-4b-it", model_kwargs=model_kwargs)
pipe.model.generation_config.do_sample = False
"""### 🩻 Radiology Image Interpretation Logic
This function uses MedGemma to generate a plain-language report based on the provided prompt and image. It prepares a structured message and passes it to the model for inference.
"""
from PIL import Image
@spaces.GPU
def infer(prompt: str, image: Image.Image, system: str = None) -> str:
image_filename = "image.png"
image.save(image_filename)
messages = []
if system:
messages.append({
"role": "system",
"content": [{"type": "text", "text": system}]
})
messages.append({
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": image}
]
})
output = pipe(text=messages, max_new_tokens=2048)
response = output[0]["generated_text"][-1]["content"]
return response
"""### 🔊 Prepare for Gemini's Native TTS
We define a helper function to convert Gemini’s audio output into a proper `.wav` file. This is key to bringing our radiology assistant’s voice to life!
"""
import wave
def wave_file(filename, pcm, channels=1, rate=24000, sample_width=2):
with wave.open(filename, "wb") as wf:
wf.setnchannels(channels)
wf.setsampwidth(sample_width)
wf.setframerate(rate)
wf.writeframes(pcm)
"""### 🤖 Bringing It All Together
This function ties the image analysis and voice generation together. Based on user input, it fetches the image, generates the report using MedGemma, and speaks it out using Gemini's native TTS.
"""
import gradio as gr
import requests
def _do_predictions(text, image_file, image_url, source_type):
if source_type == "url":
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
else:
image = image_file
report = infer(text, image)
response = client.models.generate_content(
model="gemini-2.5-flash-preview-tts",
contents=report,
config=types.GenerateContentConfig(
response_modalities=["AUDIO"],
speech_config=types.SpeechConfig(
voice_config=types.VoiceConfig(
prebuilt_voice_config=types.PrebuiltVoiceConfig(
voice_name='Kore',
)
)
),
)
)
data = response.candidates[0].content.parts[0].inline_data.data
file_name='out.wav'
wave_file(file_name, data)
return report, file_name
"""### 🖼️ Interactive Web UI with Gradio
Finally, we build an easy-to-use interface using Gradio. Users can upload an image or provide a URL, type a prompt, and receive both a text and audio response powered by **MedGemma + Gemini TTS**.
"""
def toggle_image_src(choice):
if choice == "url":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
with gr.Blocks() as demo:
gr.Markdown(
"""
# Google I/O 2025 Demo: Radiology with MedGemma & Gemini's Native TTS
## Built by [Rishiraj Acharya](https://www.linkedin.com/in/rishirajacharya/) (Google Developer Expert in Kaggle, Cloud, AI)
This demo showcases two of the exciting announcements from Google I/O 2025: **MedGemma** and **Gemini's native text-to-speech (TTS)**. It features a radiology voice assistant powered by MedGemma, which translates complex medical image reports into simple, understandable language. Combined with Gemini's natural-sounding TTS, the assistant provides an intuitive, voice-driven experience—highlighting key areas in radiology images and making medical insights more accessible.
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Instructions", lines=2, interactive=True)
with gr.Column():
radio = gr.Radio(["file", "url"], value="file",
label="Input Image Source")
image_file = gr.Image(label="File", type="pil", visible=True)
image_url = gr.Textbox(label="URL", visible=False)
with gr.Row():
submit = gr.Button("Generate")
with gr.Column():
output = gr.Textbox(label="Generated Report")
audio_output = gr.Audio(label="Generated Report (wav)")
submit.click(_do_predictions, inputs=[text, image_file, image_url, radio],
outputs=[output, audio_output])
radio.change(toggle_image_src, radio, [image_file, image_url], queue=False, show_progress=False)
gr.Examples(
fn=_do_predictions,
examples=[
["Describe this X-ray", Image.open(requests.get("https://google-rad-explain.hf.space/static/images/Effusion2.jpg", headers={"User-Agent": "example"}, stream=True).raw), None, "file"],
["Describe this CT", None, "https://google-rad-explain.hf.space/static/images/CT-Tumor.jpg", "url"],
],
inputs=[text, image_file, image_url, radio],
outputs=[output, audio_output]
)
gr.Markdown("""
### Disclaimer
This demonstration is for illustrative purposes only. It is not intended to diagnose or suggest treatment of any disease or condition, and should not be used for medical advice.
""")
demo.queue(max_size=8 * 4).launch(share=True) |