File size: 5,070 Bytes
7119802
 
3566a6b
983678f
 
338a3b4
 
 
 
 
7119802
3566a6b
338a3b4
 
7119802
983678f
 
 
 
 
 
 
 
 
 
 
 
 
338a3b4
 
 
 
 
 
 
 
 
 
7119802
 
338a3b4
7119802
338a3b4
 
 
7119802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
983678f
 
 
7119802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338a3b4
7119802
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from huggingface_hub import InferenceClient
import gradio as gr
import os
import re
import requests
import http.client
import typing
import urllib.request
import vertexai
from vertexai.generative_models import GenerativeModel, Image

vertexai.init(project=os.getenv('project_id'))
model = GenerativeModel("gemini-1.0-pro-vision")
client = InferenceClient("google/gemma-7b-it")

def extract_image_urls(text):
    url_regex = r"(https?:\/\/.*\.(?:png|jpg|jpeg|gif|webp|svg))"
    image_urls = re.findall(url_regex, text, flags=re.IGNORECASE)
    valid_image_url = ""
    for url in image_urls:
        try:
            response = requests.head(url)  # Use HEAD request for efficiency
            if response.status_code in range(200, 300) and 'image' in response.headers.get('content-type', ''):
                valid_image_url = url
        except requests.exceptions.RequestException:
            pass  # Ignore inaccessible URLs
    return valid_image_url

def load_image_from_url(image_url: str) -> Image:
    with urllib.request.urlopen(image_url) as response:
        response = typing.cast(http.client.HTTPResponse, response)
        image_bytes = response.read()
    return Image.from_bytes(image_bytes)

def search(url):
    image = load_image_from_url(url)
    response = model.generate_content([image,"what is shown in this image?"])
    return response.text

def format_prompt(message, history):
  prompt = ""
  for user_prompt, bot_response in history:
    prompt += f"<start_of_turn>user\n{user_prompt}<end_of_turn>\n"
    prompt += f"<start_of_turn>model\n{bot_response}<end_of_turn>\n"
  prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
  return prompt

def generate(
    prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    image = extract_image_urls(prompt)
    if image:
        prompt = prompt.replace(image, search(image))
    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


additional_inputs=[
    gr.Textbox(
        label="System Prompt",
        max_lines=1,
        interactive=True,
    ),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=1048,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.0,
        maximum=1,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
          ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
          ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
          ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
          ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
          ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
         ]

gr.ChatInterface(
    fn=generate,
    chatbot=gr.Chatbot(show_label=True, show_share_button=True, show_copy_button=True, likeable=True, layout="bubble", bubble_full_width=False),
    additional_inputs=additional_inputs,
    title="Hey Gemini",
    description="Gemini Sprint submission by Rishiraj Acharya. Uses Google's Gemini 1.0 Pro Vision multimodal model from Vertex AI with Google's Gemma 7B Instruct model from Hugging Face.",
    theme="Soft",
    examples=examples,
    concurrency_limit=20,
).launch(show_api=False)