File size: 15,287 Bytes
2adef2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a1062c
2adef2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a1062c
 
 
 
2adef2c
 
 
 
 
 
 
 
ccc798d
2adef2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8ee5e0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import io
import os
import boto3
import traceback
import re
import logging

import gradio as gr
from PIL import Image, ImageDraw

from docquery.document import load_document, ImageDocument
from docquery.ocr_reader import get_ocr_reader
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from transformers import DonutProcessor, VisionEncoderDecoderModel
from transformers import pipeline

# avoid ssl errors
import ssl

ssl._create_default_https_context = ssl._create_unverified_context

os.environ["TOKENIZERS_PARALLELISM"] = "false"

logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

# Init models

layoutlm_pipeline = pipeline(
    "document-question-answering",
    model="impira/layoutlm-document-qa",
)
lilt_tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-infoxlm-base")
lilt_model = AutoModelForQuestionAnswering.from_pretrained(
    "nielsr/lilt-xlm-roberta-base"
)

donut_processor = DonutProcessor.from_pretrained(
    "naver-clova-ix/donut-base-finetuned-docvqa"
)
donut_model = VisionEncoderDecoderModel.from_pretrained(
    "naver-clova-ix/donut-base-finetuned-docvqa"
)

TEXTRACT = "Textract Query"
LAYOUTLM = "LayoutLM"
DONUT = "Donut"
LILT = "LiLT"


def image_to_byte_array(image: Image) -> bytes:
    image_as_byte_array = io.BytesIO()
    image.save(image_as_byte_array, format="PNG")
    image_as_byte_array = image_as_byte_array.getvalue()
    return image_as_byte_array


def run_textract(question, document):
    logger.info(f"Running Textract model.")
    image_as_byte_base64 = image_to_byte_array(image=document.b)
    response = boto3.client("textract").analyze_document(
        Document={
            "Bytes": image_as_byte_base64,
        },
        FeatureTypes=[
            "QUERIES",
        ],
        QueriesConfig={
            "Queries": [
                {
                    "Text": question,
                    "Pages": [
                        "*",
                    ],
                },
            ]
        },
    )
    logger.info(f"Output of Textract model {response}.")
    for element in response["Blocks"]:
        if element["BlockType"] == "QUERY_RESULT":
            return {
                "score": element["Confidence"],
                "answer": element["Text"],
                # "word_ids": element
            }
    else:
        Exception("No QUERY_RESULT found in the response from Textract.")


def run_layoutlm(question, document):
    logger.info(f"Running layoutlm model.")
    result = layoutlm_pipeline(document.context["image"][0][0], question)[0]
    logger.info(f"Output of layoutlm model {result}.")
    # [{'score': 0.9999411106109619, 'answer': 'LETTER OF CREDIT', 'start': 106, 'end': 108}]
    return {
        "score": result["score"],
        "answer": result["answer"],
        "word_ids": [result["start"], result["end"]],
        "page": 0,
    }


def run_lilt(question, document):
    logger.info(f"Running lilt model.")
    # use this model + tokenizer
    processed_document = document.context["image"][0][1]
    words = [x[0] for x in processed_document]
    boxes = [x[1] for x in processed_document]

    encoding = lilt_tokenizer(
        text=question,
        text_pair=words,
        boxes=boxes,
        add_special_tokens=True,
        return_tensors="pt",
    )
    outputs = lilt_model(**encoding)
    logger.info(f"Output for lilt model {outputs}.")

    answer_start_index = outputs.start_logits.argmax()
    answer_end_index = outputs.end_logits.argmax()

    predict_answer_tokens = encoding.input_ids[
                            0, answer_start_index: answer_end_index + 1
                            ]
    predict_answer = lilt_tokenizer.decode(
        predict_answer_tokens, skip_special_tokens=True
    )
    return {
        "score": "n/a",
        "answer": predict_answer,
        # "word_ids": element
    }


def run_donut(question, document):
    logger.info(f"Running donut model.")
    # prepare encoder inputs
    pixel_values = donut_processor(
        document.context["image"][0][0], return_tensors="pt"
    ).pixel_values

    # prepare decoder inputs
    task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
    prompt = task_prompt.replace("{user_input}", question)
    decoder_input_ids = donut_processor.tokenizer(
        prompt, add_special_tokens=False, return_tensors="pt"
    ).input_ids

    # generate answer
    outputs = donut_model.generate(
        pixel_values,
        decoder_input_ids=decoder_input_ids,
        max_length=donut_model.decoder.config.max_position_embeddings,
        early_stopping=True,
        pad_token_id=donut_processor.tokenizer.pad_token_id,
        eos_token_id=donut_processor.tokenizer.eos_token_id,
        use_cache=True,
        num_beams=1,
        bad_words_ids=[[donut_processor.tokenizer.unk_token_id]],
        return_dict_in_generate=True,
    )
    logger.info(f"Output for donut {outputs}")
    sequence = donut_processor.batch_decode(outputs.sequences)[0]
    sequence = sequence.replace(donut_processor.tokenizer.eos_token, "").replace(
        donut_processor.tokenizer.pad_token, ""
    )
    sequence = re.sub(
        r"<.*?>", "", sequence, count=1
    ).strip()  # remove first task start token

    result = donut_processor.token2json(sequence)
    return {
        "score": "n/a",
        "answer": result["answer"],
        # "word_ids": element
    }


def process_path(path):
    error = None
    if path:
        try:
            document = load_document(path)
            return (
                document,
                gr.update(visible=True, value=document.preview),
                gr.update(visible=True),
                gr.update(visible=False, value=None),
                gr.update(visible=False, value=None),
                None,
            )
        except Exception as e:
            traceback.print_exc()
            error = str(e)
    return (
        None,
        gr.update(visible=False, value=None),
        gr.update(visible=False),
        gr.update(visible=False, value=None),
        gr.update(visible=False, value=None),
        gr.update(visible=True, value=error) if error is not None else None,
        None,
    )


def process_upload(file):
    if file:
        return process_path(file.name)
    else:
        return (
            None,
            gr.update(visible=False, value=None),
            gr.update(visible=False),
            gr.update(visible=False, value=None),
            gr.update(visible=False, value=None),
            None,
        )


def lift_word_boxes(document, page):
    return document.context["image"][page][1]


def expand_bbox(word_boxes):
    if len(word_boxes) == 0:
        return None

    min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes])
    min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)]
    return [min_x, min_y, max_x, max_y]


# LayoutLM boxes are normalized to 0, 1000
def normalize_bbox(box, width, height, padding=0.005):
    min_x, min_y, max_x, max_y = [c / 1000 for c in box]
    if padding != 0:
        min_x = max(0, min_x - padding)
        min_y = max(0, min_y - padding)
        max_x = min(max_x + padding, 1)
        max_y = min(max_y + padding, 1)
    return [min_x * width, min_y * height, max_x * width, max_y * height]


MODELS = {
    LAYOUTLM: run_layoutlm,
    DONUT: run_donut,
    # LILT: run_lilt,
    # TEXTRACT: run_textract,
}


def process_question(question, document, model=list(MODELS.keys())[0]):
    if not question or document is None:
        return None, None, None
    logger.info(f"Running for model {model}")
    prediction = MODELS[model](question=question, document=document)
    logger.info(f"Got prediction {prediction}")
    pages = [x.copy().convert("RGB") for x in document.preview]
    text_value = prediction["answer"]
    if "word_ids" in prediction:
        logger.info(f"Setting bounding boxes.")
        image = pages[prediction["page"]]
        draw = ImageDraw.Draw(image, "RGBA")
        word_boxes = lift_word_boxes(document, prediction["page"])
        x1, y1, x2, y2 = normalize_bbox(
            expand_bbox([word_boxes[i] for i in prediction["word_ids"]]),
            image.width,
            image.height,
        )
        draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255)))

    return (
        gr.update(visible=True, value=pages),
        gr.update(visible=True, value=prediction),
        gr.update(
            visible=True,
            value=text_value,
        ),
    )


def load_example_document(img, question, model):
    if img is not None:
        document = ImageDocument(Image.fromarray(img), get_ocr_reader())
        preview, answer, answer_text = process_question(question, document, model)
        return document, question, preview, gr.update(visible=True), answer, answer_text
    else:
        return None, None, None, gr.update(visible=False), None, None


CSS = """
#question input {
    font-size: 16px;
}
#url-textbox {
    padding: 0 !important;
}
#short-upload-box .w-full {
    min-height: 10rem !important;
}
/* I think something like this can be used to re-shape
 * the table
 */
/*
.gr-samples-table tr {
    display: inline;
}
.gr-samples-table .p-2 {
    width: 100px;
}
*/
#select-a-file {
    width: 100%;
}
#file-clear {
    padding-top: 2px !important;
    padding-bottom: 2px !important;
    padding-left: 8px !important;
    padding-right: 8px !important;
	margin-top: 10px;
}
.gradio-container .gr-button-primary {
    background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
    border: 1px solid #B0DCCC;
    border-radius: 8px;
    color: #1B8700;
}
.gradio-container.dark button#submit-button {
    background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%);
    border: 1px solid #B0DCCC;
    border-radius: 8px;
    color: #1B8700
}
table.gr-samples-table tr td {
    border: none;
    outline: none;
}
table.gr-samples-table tr td:first-of-type {
    width: 0%;
}
div#short-upload-box div.absolute {
    display: none !important;
}
gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div {
    gap: 0px 2%;
}
gradio-app div div div div.w-full, .gradio-app div div div div.w-full {
    gap: 0px;
}
gradio-app h2, .gradio-app h2 {
    padding-top: 10px;
}
#answer {
    overflow-y: scroll;
    color: white;
    background: #666;
    border-color: #666;
    font-size: 20px;
    font-weight: bold;
}
#answer span {
    color: white;
}
#answer textarea {
    color:white;
    background: #777;
    border-color: #777;
    font-size: 18px;
}
#url-error input {
    color: red;
}
"""

examples = [
    [
        "scenario-1.png",
        "What is the final consignee?",
    ],
    [
        "scenario-1.png",
        "What are the payment terms?",
    ],
    [
        "scenario-2.png",
        "What is the actual manufacturer?",
    ],
    [
        "scenario-3.png",
        'What is the "ship to" destination?',
    ],
    [
        "scenario-4.png",
        "What is the color?",
    ],
    [
        "scenario-5.png",
        'What is the "said to contain"?',
    ],
    [
        "scenario-5.png",
        'What is the "Net Weight"?',
    ],
    [
        "scenario-5.png",
        'What is the "Freight Collect"?',
    ],
    [
        "bill_of_lading_1.png",
        "What is the shipper?",
    ],
    [
        "japanese-invoice.png",
        "What is the total amount?",
    ],
    [
        "example-10.jpeg",
        "What is mineral water price amount?"
    ]
]

with gr.Blocks(css=CSS) as demo:
    gr.Markdown("# Document Question Answer Comparator")
    gr.Markdown("""
This space compares some of the latest models that can be used commercially.
- [LayoutLM](https://huggingface.co/impira/layoutlm-document-qa) uses text/layout and images. Uses tesseract for OCR. 
- [Donut](https://huggingface.co/naver-clova-ix/donut-base-finetuned-docvqa) OCR free document understanding. Uses vision encoder for OCR and a text decoder for providing the answer  
""")

    document = gr.Variable()
    example_question = gr.Textbox(visible=False)
    example_image = gr.Image(visible=False)

    with gr.Row(equal_height=True):
        with gr.Column():
            with gr.Row():
                gr.Markdown("## 1. Select a file", elem_id="select-a-file")
                img_clear_button = gr.Button(
                    "Clear", variant="secondary", elem_id="file-clear", visible=False
                )
            image = gr.Gallery(visible=False)
            upload = gr.File(label=None, interactive=True, elem_id="short-upload-box")
            gr.Examples(
                examples=examples,
                inputs=[example_image, example_question],
            )

        with gr.Column() as col:
            gr.Markdown("## 2. Ask a question")
            question = gr.Textbox(
                label="Question",
                placeholder="e.g. What is the invoice number?",
                lines=1,
                max_lines=1,
            )
            model = gr.Radio(
                choices=list(MODELS.keys()),
                value=list(MODELS.keys())[0],
                label="Model",
            )

            with gr.Row():
                clear_button = gr.Button("Clear", variant="secondary")
                submit_button = gr.Button(
                    "Submit", variant="primary", elem_id="submit-button"
                )
            with gr.Column():
                output_text = gr.Textbox(
                    label="Top Answer", visible=False, elem_id="answer"
                )
                output = gr.JSON(label="Output", visible=False)

    for cb in [img_clear_button, clear_button]:
        cb.click(
            lambda _: (
                gr.update(visible=False, value=None),
                None,
                gr.update(visible=False, value=None),
                gr.update(visible=False, value=None),
                gr.update(visible=False),
                None,
                None,
                None,
                gr.update(visible=False, value=None),
                None,
            ),
            inputs=clear_button,
            outputs=[
                image,
                document,
                output,
                output_text,
                img_clear_button,
                example_image,
                upload,
                question,
            ],
        )

    upload.change(
        fn=process_upload,
        inputs=[upload],
        outputs=[document, image, img_clear_button, output, output_text],
    )

    question.submit(
        fn=process_question,
        inputs=[question, document, model],
        outputs=[image, output, output_text],
    )

    submit_button.click(
        process_question,
        inputs=[question, document, model],
        outputs=[image, output, output_text],
    )

    model.change(
        process_question,
        inputs=[question, document, model],
        outputs=[image, output, output_text],
    )

    example_image.change(
        fn=load_example_document,
        inputs=[example_image, example_question, model],
        outputs=[document, question, image, img_clear_button, output, output_text],
    )

if __name__ == "__main__":
    demo.launch(enable_queue=False)