Spaces:
Runtime error
Runtime error
File size: 8,148 Bytes
3a19a1a b879b4e 3a19a1a db3750b 3a19a1a db3750b 3a19a1a db3750b f3abb0d 3a19a1a db3750b 3a19a1a db3750b 3a19a1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os
import torch
import gradio as gr
import os
import sys
import numpy as np
from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download
import os
import sys
import tempfile
import shutil
from argparse import Namespace
from pathlib import Path
import shutil
import dlib
import numpy as np
import torchvision.transforms as transforms
from torchvision import utils
from PIL import Image
from model.sg2_model import Generator
from generate_videos import generate_frames, video_from_interpolations, vid_to_gif
model_dir = "models"
os.makedirs(model_dir, exist_ok=True)
models_and_paths = {"akhaliq/JoJoGAN_e4e_ffhq_encode": "e4e_ffhq_encode.pt",
"akhaliq/jojogan_dlib": "shape_predictor_68_face_landmarks.dat",
"akhaliq/jojogan-stylegan2-ffhq-config-f": "stylegan2-ffhq-config-f.pt"}
def get_models():
os.makedirs(model_dir, exist_ok=True)
for repo_id, file_path in models_and_paths.items():
hf_hub_download(repo_id=repo_id, filename=file_path)
if not "akhaliq" in repo_id:
shutil.move(file_path, os.path.join(model_dir, file_path))
elif "stylegan2" in file_path:
shutil.move(file_path, os.path.join(model_dir, "base.pt"))
model_list = [Path(model_ckpt).stem for model_ckpt in os.listdir(model_dir)]
return model_list
model_list = get_models()
class ImageEditor(object):
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
latent_size = 512
n_mlp = 8
channel_mult = 2
model_size = 1024
self.generators = {}
for model in model_list:
g_ema = Generator(
model_size, latent_size, n_mlp, channel_multiplier=channel_mult
).to(self.device)
checkpoint = torch.load(f"models/{model}.pt")
g_ema.load_state_dict(checkpoint['g_ema'])
self.generators[model] = g_ema
self.experiment_args = {"model_path": "e4e_ffhq_encode.pt"}
self.experiment_args["transform"] = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
self.resize_dims = (256, 256)
model_path = self.experiment_args["model_path"]
ckpt = torch.load(model_path, map_location="cpu")
opts = ckpt["opts"]
opts["checkpoint_path"] = model_path
opts = Namespace(**opts)
self.e4e_net = pSp(opts)
self.e4e_net.eval()
self.e4e_net.cuda()
self.shape_predictor = dlib.shape_predictor(
models_and_paths["akhaliq/jojogan_dlib"]
)
print("setup complete")
def get_style_list(self):
style_list = ['all', 'list - enter below']
for key in self.generators:
style_list.append(key)
return style_list
def predict(
self,
input, # Input image path
output_style, # Which output style do you want to use?
style_list, # Comma seperated list of models to use. Only accepts models from the output_style list
generate_video, # Generate a video instead of an output image
with_editing, # Apply latent space editing to the generated video
video_format # Choose gif to display in browser, mp4 for higher-quality downloadable video
):
if output_style == 'all':
styles = model_list
elif output_style == 'list - enter below':
styles = style_list.split(",")
for style in styles:
if style not in model_list:
raise ValueError(f"Encountered style '{style}' in the style_list which is not an available option.")
else:
styles = [output_style]
# @title Align image
input_image = self.run_alignment(str(input))
input_image = input_image.resize(self.resize_dims)
img_transforms = self.experiment_args["transform"]
transformed_image = img_transforms(input_image)
with torch.no_grad():
images, latents = self.run_on_batch(transformed_image.unsqueeze(0))
result_image, latent = images[0], latents[0]
inverted_latent = latent.unsqueeze(0).unsqueeze(1)
out_dir = Path(tempfile.mkdtemp())
out_path = out_dir / "out.jpg"
generators = [self.generators[style] for style in styles]
if not generate_video:
with torch.no_grad():
img_list = []
for g_ema in generators:
img, _ = g_ema(inverted_latent, input_is_latent=True, truncation=1, randomize_noise=False)
img_list.append(img)
out_img = torch.cat(img_list, axis=0)
utils.save_image(out_img, out_path, nrow=int(np.sqrt(out_img.size(0))), normalize=True, scale_each=True, range=(-1, 1))
return Path(out_path)
return self.generate_vid(generators, inverted_latent, out_dir, video_format, with_editing)
def generate_vid(self, generators, latent, out_dir, video_format, with_editing):
np_latent = latent.squeeze(0).cpu().detach().numpy()
args = {
'fps': 24,
'target_latents': None,
'edit_directions': None,
'unedited_frames': 0 if with_editing else 40 * (len(generators) - 1)
}
args = Namespace(**args)
with tempfile.TemporaryDirectory() as dirpath:
generate_frames(args, np_latent, generators, dirpath)
video_from_interpolations(args.fps, dirpath)
gen_path = Path(dirpath) / "out.mp4"
out_path = out_dir / f"out.{video_format}"
if video_format == 'gif':
vid_to_gif(gen_path, out_dir, scale=256, fps=args.fps)
else:
shutil.copy2(gen_path, out_path)
return out_path
def run_alignment(self, image_path):
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
print("Aligned image has shape: {}".format(aligned_image.size))
return aligned_image
def run_on_batch(self, inputs):
images, latents = self.e4e_net(
inputs.to("cuda").float(), randomize_noise=False, return_latents=True
)
return images, latents
editor = ImageEditor()
title = "StyleGAN-NADA"
description = "Gradio Demo for StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators (SIGGRAPH 2022). To use it, upload your image and select a target style. More information about the paper and training new models can be found below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.00946' target='_blank'>StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators</a> | <a href='https://stylegan-nada.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/rinongal/StyleGAN-nada' target='_blank'>Code</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=rinong_sgnada' alt='visitor badge'></center>"
gr.Interface(editor.predict, [gr.inputs.Image(type="pil"),
gr.inputs.Dropdown(choices=editor.get_style_list(), type="value", default='base', label="Model"),
gr.inputs.Textbox(lines=1, placeholder=None, default="joker,anime,modigliani", label="Style List", optional=True),
gr.inputs.Checkbox(default=False, label="Generate Video?", optional=False),
gr.inputs.Checkbox(default=False, label="With Editing?", optional=False),
gr.inputs.Radio(choices=["gif", "mp4"], type="value", default='mp4', label="Video Format")],
gr.outputs.Image(type="file"), title=title, description=description, article=article, allow_flagging=False, allow_screenshot=False).launch()
|