Spaces:
Runtime error
Runtime error
File size: 17,064 Bytes
3a19a1a 210c702 3a19a1a b879b4e 3a19a1a db3750b 3a19a1a 210c702 fcf0449 3a19a1a 5479d05 fcf0449 1408f30 8e301b6 4ec364e 1408f30 3a19a1a db3750b 5479d05 3a19a1a 5479d05 3a19a1a 5479d05 3a19a1a 5479d05 3a19a1a fcf0449 5479d05 3a19a1a a85cdf5 3a19a1a 5479d05 3a19a1a ea00796 3a19a1a 5479d05 3a19a1a fcf0449 3a19a1a 96b8eee 3a19a1a 1edbcae cbac29e 3a19a1a 1edbcae 9cdf7e4 210c702 9cdf7e4 1edbcae 210c702 6104a4e 210c702 83dc64b 210c702 6104a4e 210c702 6f52ac4 fcf0449 210c702 6104a4e 210c702 83dc64b 1edbcae 210c702 83dc64b 1edbcae 9cdf7e4 210c702 1edbcae cbac29e 210c702 1edbcae 210c702 3a19a1a 1edbcae 9cdf7e4 3a19a1a 210c702 3a19a1a 210c702 3a19a1a 210c702 3a19a1a fcf0449 210c702 3a19a1a 6104a4e 210c702 3a19a1a 210c702 3a19a1a 210c702 3a19a1a 210c702 3a19a1a 210c702 3a19a1a 720df82 3a19a1a 210c702 8e301b6 210c702 bb723df 210c702 96b8eee 7a331ca 96b8eee 7a331ca a39b130 8e301b6 fcf0449 210c702 7a331ca 210c702 96b8eee 210c702 7a331ca 96b8eee 210c702 1edbcae 210c702 fcf0449 210c702 6104a4e 210c702 1edbcae 210c702 83dc64b 65a078b 83dc64b 210c702 83dc64b fcf0449 4663a72 210c702 3a19a1a 8e301b6 3a19a1a 8e301b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import os
import random
import torch
import gradio as gr
from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download
import tempfile
from argparse import Namespace
import shutil
import dlib
import numpy as np
import torchvision.transforms as transforms
from torchvision import utils
from model.sg2_model import Generator
from generate_videos import generate_frames, video_from_interpolations, project_code_by_edit_name
from styleclip.styleclip_global import project_code_with_styleclip, style_tensor_to_style_dict
import clip
model_dir = "models"
os.makedirs(model_dir, exist_ok=True)
model_repos = {"e4e": ("akhaliq/JoJoGAN_e4e_ffhq_encode", "e4e_ffhq_encode.pt"),
"dlib": ("akhaliq/jojogan_dlib", "shape_predictor_68_face_landmarks.dat"),
"sc_fs3": ("rinong/stylegan-nada-models", "fs3.npy"),
"base": ("akhaliq/jojogan-stylegan2-ffhq-config-f", "stylegan2-ffhq-config-f.pt"),
"anime": ("rinong/stylegan-nada-models", "anime.pt"),
"joker": ("rinong/stylegan-nada-models", "joker.pt"),
# "simpson": ("rinong/stylegan-nada-models", "simpson.pt"),
# "ssj": ("rinong/stylegan-nada-models", "ssj.pt"),
# "white_walker": ("rinong/stylegan-nada-models", "white_walker.pt"),
# "zuckerberg": ("rinong/stylegan-nada-models", "zuckerberg.pt"),
# "cubism": ("rinong/stylegan-nada-models", "cubism.pt"),
# "disney_princess": ("rinong/stylegan-nada-models", "disney_princess.pt"),
# "edvard_munch": ("rinong/stylegan-nada-models", "edvard_munch.pt"),
# "van_gogh": ("rinong/stylegan-nada-models", "van_gogh.pt"),
# "oil": ("rinong/stylegan-nada-models", "oil.pt"),
# "rick_morty": ("rinong/stylegan-nada-models", "rick_morty.pt"),
# "botero": ("rinong/stylegan-nada-models", "botero.pt"),
# "crochet": ("rinong/stylegan-nada-models", "crochet.pt"),
# "modigliani": ("rinong/stylegan-nada-models", "modigliani.pt"),
# "shrek": ("rinong/stylegan-nada-models", "shrek.pt"),
# "sketch": ("rinong/stylegan-nada-models", "sketch.pt"),
# "thanos": ("rinong/stylegan-nada-models", "thanos.pt"),
}
def get_models():
os.makedirs(model_dir, exist_ok=True)
model_paths = {}
for model_name, repo_details in model_repos.items():
download_path = hf_hub_download(repo_id=repo_details[0], filename=repo_details[1])
model_paths[model_name] = download_path
return model_paths
model_paths = get_models()
class ImageEditor(object):
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
latent_size = 512
n_mlp = 8
channel_mult = 2
model_size = 1024
self.generators = {}
self.model_list = [name for name in model_paths.keys() if name not in ["e4e", "dlib", "sc_fs3"]]
for model in self.model_list:
g_ema = Generator(
model_size, latent_size, n_mlp, channel_multiplier=channel_mult
).to(self.device)
checkpoint = torch.load(model_paths[model], map_location=self.device)
g_ema.load_state_dict(checkpoint['g_ema'])
self.generators[model] = g_ema
self.experiment_args = {"model_path": model_paths["e4e"]}
self.experiment_args["transform"] = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
self.resize_dims = (256, 256)
model_path = self.experiment_args["model_path"]
ckpt = torch.load(model_path, map_location="cpu")
opts = ckpt["opts"]
opts["checkpoint_path"] = model_path
opts = Namespace(**opts)
self.e4e_net = pSp(opts, self.device)
self.e4e_net.eval()
self.shape_predictor = dlib.shape_predictor(
model_paths["dlib"]
)
self.styleclip_fs3 = torch.from_numpy(np.load(model_paths["sc_fs3"])).to(self.device)
self.clip_model, _ = clip.load("ViT-B/32", device=self.device)
print("setup complete")
def get_style_list(self):
style_list = []
for key in self.generators:
style_list.append(key)
return style_list
def invert_image(self, input_image):
input_image = self.run_alignment(str(input_image))
input_image = input_image.resize(self.resize_dims)
img_transforms = self.experiment_args["transform"]
transformed_image = img_transforms(input_image)
with torch.no_grad():
images, latents = self.run_on_batch(transformed_image.unsqueeze(0))
result_image, latent = images[0], latents[0]
inverted_latent = latent.unsqueeze(0).unsqueeze(1)
return inverted_latent
def get_generators_for_styles(self, output_styles, loop_styles=False):
if "base" in output_styles: # always start with base if chosen
output_styles.insert(0, output_styles.pop(output_styles.index("base")))
if loop_styles:
output_styles.append(output_styles[0])
return [self.generators[style] for style in output_styles]
def _pack_edits(func):
def inner(self,
edit_type_choice,
pose_slider,
smile_slider,
gender_slider,
age_slider,
hair_slider,
src_text_styleclip,
tar_text_styleclip,
alpha_styleclip,
beta_styleclip,
*args):
edit_choices = {"edit_type": edit_type_choice,
"pose": pose_slider,
"smile": smile_slider,
"gender": gender_slider,
"age": age_slider,
"hair_length": hair_slider,
"src_text": src_text_styleclip,
"tar_text": tar_text_styleclip,
"alpha": alpha_styleclip,
"beta": beta_styleclip}
return func(self, *args, edit_choices)
return inner
def get_target_latents(self, source_latent, edit_choices, generators):
np_source_latent = source_latent.squeeze(0).cpu().detach().numpy()
target_latents = []
if edit_choices["edit_type"] == "InterFaceGAN":
for attribute_name in ["pose", "smile", "gender", "age", "hair_length"]:
strength = edit_choices[attribute_name]
if strength != 0.0:
target_latents.append(project_code_by_edit_name(np_source_latent, attribute_name, strength))
elif edit_choices["edit_type"] == "StyleCLIP":
source_s_dict = generators[0].get_s_code(source_latent, input_is_latent=True)[0]
target_latents.append(project_code_with_styleclip(source_s_dict,
edit_choices["src_text"],
edit_choices["tar_text"],
edit_choices["alpha"],
edit_choices["beta"],
generators[0],
self.styleclip_fs3,
self.clip_model))
# if edit type is none or if all slides were set to 0
if not target_latents:
target_latents = [np_source_latent, ] * max((len(generators) - 1), 1)
return target_latents
@_pack_edits
def edit_image(self, input, output_styles, edit_choices):
return self.predict(input, output_styles, edit_choices=edit_choices)
@_pack_edits
def edit_video(self, input, output_styles, loop_styles, edit_choices):
return self.predict(input, output_styles, generate_video=True, loop_styles=loop_styles, edit_choices=edit_choices)
def predict(
self,
input, # Input image path
output_styles, # Style checkbox options.
generate_video = False, # Generate a video instead of an output image
loop_styles = False, # Loop back to the initial style
edit_choices = None, # Optional dictionary with edit choice arguments
):
if edit_choices is None:
edit_choices = {"edit_type": "None"}
# @title Align image
out_dir = tempfile.mkdtemp()
inverted_latent = self.invert_image(input)
generators = self.get_generators_for_styles(output_styles, loop_styles)
target_latents = self.get_target_latents(inverted_latent, edit_choices, generators)
if not generate_video:
output_paths = []
with torch.no_grad():
for g_ema in generators:
latent_for_gen = random.choice(target_latents)
if edit_choices["edit_type"] == "StyleCLIP":
latent_for_gen = style_tensor_to_style_dict(latent_for_gen, g_ema)
img, _ = g_ema(latent_for_gen, input_is_s_code=True, input_is_latent=True, truncation=1, randomize_noise=False)
else:
latent_for_gen = [torch.from_numpy(latent_for_gen).float().to(self.device)]
img, _ = g_ema(latent_for_gen, input_is_latent=True, truncation=1, randomize_noise=False)
output_path = os.path.join(out_dir, f"out_{len(output_paths)}.jpg")
utils.save_image(img, output_path, nrow=1, normalize=True, range=(-1, 1))
output_paths.append(output_path)
return output_paths
return self.generate_vid(generators, inverted_latent, target_latents, out_dir)
def generate_vid(self, generators, source_latent, target_latents, out_dir):
fps = 24
np_latent = source_latent.squeeze(0).cpu().detach().numpy()
with tempfile.TemporaryDirectory() as dirpath:
generate_frames(np_latent, target_latents, generators, dirpath)
video_from_interpolations(fps, dirpath)
gen_path = os.path.join(dirpath, "out.mp4")
out_path = os.path.join(out_dir, "out.mp4")
shutil.copy2(gen_path, out_path)
return out_path
def run_alignment(self, image_path):
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
print("Aligned image has shape: {}".format(aligned_image.size))
return aligned_image
def run_on_batch(self, inputs):
images, latents = self.e4e_net(
inputs.to(self.device).float(), randomize_noise=False, return_latents=True
)
return images, latents
editor = ImageEditor()
# def change_component_visibility(component_types, invert_choices):
# def visibility_impl(visible):
# return [component_types[idx].update(visible=visible ^ invert_choices[idx]) for idx in range(len(component_types))]
# return visibility_impl
# def group_visibility(visible):
# print("visible: ", visible)
# return gr.Group.update(visibile=visible)
blocks = gr.Blocks()
with blocks:
gr.Markdown("<h1><center>StyleGAN-NADA</center></h1>")
gr.Markdown(
"Demo for StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators (SIGGRAPH 2022)."
)
gr.Markdown(
"For more information about the paper and code for training your own models (with examples OR text), see below."
)
gr.Markdown("<h4 style='font-size: 110%;margin-top:.5em'>On biases</h4><div>This model relies on StyleGAN and CLIP, both of which are prone to biases such as poor representation of minorities or reinforcement of societal biases, such as gender norms. </div>")
with gr.Row():
input_img = gr.inputs.Image(type="filepath", label="Input image")
with gr.Column():
style_choice = gr.inputs.CheckboxGroup(choices=editor.get_style_list(), type="value", label="Choose your styles!")
editing_type_choice = gr.Radio(choices=["None", "InterFaceGAN", "StyleCLIP"], label="Choose latent space editing option. For InterFaceGAN and StyleCLIP, set the options below:")
with gr.Tabs():
with gr.TabItem("InterFaceGAN Editing Options"):
gr.Markdown("Move the sliders to make the chosen attribute stronger (e.g. the person older) or leave at 0 to disable editing.")
gr.Markdown("If multiple options are provided, they will be used randomly between images (or sequentially for a video), <u>not</u> together.")
gr.Markdown("Please note that some directions may be entangled. For example, hair length adjustments are likely to also modify the perceived gender.")
pose_slider = gr.Slider(label="Pose", minimum=-1, maximum=1, value=0, step=0.05)
smile_slider = gr.Slider(label="Smile", minimum=-1, maximum=1, value=0, step=0.05)
gender_slider = gr.Slider(label="Perceived Gender", minimum=-1, maximum=1, value=0, step=0.05)
age_slider = gr.Slider(label="Age", minimum=-1, maximum=1, value=0, step=0.05)
hair_slider = gr.Slider(label="Hair Length", minimum=-1, maximum=1, value=0, step=0.05)
ig_edit_choices = [pose_slider, smile_slider, gender_slider, age_slider, hair_slider]
with gr.TabItem("StyleCLIP Editing Options"):
gr.Markdown("Move the sliders to make the chosen attribute stronger (e.g. the person older) or leave at 0 to disable editing.")
gr.Markdown("If multiple options are provided, they will be used randomly between images (or sequentially for a video), <u>not</u> together")
src_text_styleclip = gr.Textbox(label="Source text")
tar_text_styleclip = gr.Textbox(label="Target text")
alpha_styleclip = gr.Slider(label="Edit strength", minimum=-10, maximum=10, value=0, step=0.1)
beta_styleclip = gr.Slider(label="Disentanglement Threshold", minimum=0.08, maximum=0.3, value=0.14, step=0.01)
sc_edit_choices = [src_text_styleclip, tar_text_styleclip, alpha_styleclip, beta_styleclip]
with gr.Tabs():
with gr.TabItem("Edit Images"):
with gr.Row():
with gr.Column():
with gr.Row():
img_button = gr.Button("Edit Image")
with gr.Column():
img_output = gr.Gallery(label="Output Images")
with gr.TabItem("Create Video"):
with gr.Row():
with gr.Column():
with gr.Row():
vid_button = gr.Button("Generate Video")
loop_styles = gr.inputs.Checkbox(default=True, label="Loop video back to the initial style?")
with gr.Row():
with gr.Column():
gr.Markdown("Warning: Videos generation requires the synthesis of hundreds of frames and is expected to take several minutes.")
gr.Markdown("To reduce queue times, we significantly reduced the number of video frames. Using more than 3 styles will further reduce the frames per style, leading to quicker transitions. For better control, we reccomend cloning the gradio app, adjusting `num_alphas` in `generate_videos`, and running the code locally.")
with gr.Column():
vid_output = gr.outputs.Video(label="Output Video")
edit_inputs = [editing_type_choice] + ig_edit_choices + sc_edit_choices
img_button.click(fn=editor.edit_image, inputs=edit_inputs + [input_img, style_choice], outputs=img_output)
vid_button.click(fn=editor.edit_video, inputs=edit_inputs + [input_img, style_choice, loop_styles], outputs=vid_output)
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.00946' target='_blank'>StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators</a> | <a href='https://stylegan-nada.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/rinongal/StyleGAN-nada' target='_blank'>Code</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=rinong_sgnada' alt='visitor badge'></center>"
gr.Markdown(article)
blocks.launch(enable_queue=True) |