Spaces:
Runtime error
Runtime error
File size: 10,191 Bytes
3a19a1a 720df82 3a19a1a 720df82 3a19a1a 720df82 3a19a1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
'''
Tool for generating editing videos across different domains.
Given a set of latent codes and pre-trained models, it will interpolate between the different codes in each of the target domains
and combine the resulting images into a video.
Example run command:
python generate_videos.py --ckpt /model_dir/pixar.pt \
/model_dir/ukiyoe.pt \
/model_dir/edvard_munch.pt \
/model_dir/botero.pt \
--out_dir /output/video/ \
--source_latent /latents/latent000.npy \
--target_latents /latents/
'''
import os
import argparse
import torch
from torchvision import utils
from model.sg2_model import Generator
from tqdm import tqdm
from pathlib import Path
import numpy as np
import subprocess
import shutil
import copy
VALID_EDITS = ["pose", "age", "smile", "gender", "hair_length", "beard"]
SUGGESTED_DISTANCES = {
"pose": (3.0, -3.0),
"smile": (2.0, -2.0),
"age": (4.0, -4.0),
"gender": (3.0, -3.0),
"hair_length": (None, -4.0),
"beard": (2.0, None)
}
def project_code(latent_code, boundary, distance=3.0):
if len(boundary) == 2:
boundary = boundary.reshape(1, 1, -1)
return latent_code + distance * boundary
def generate_frames(args, source_latent, g_ema_list, output_dir):
device = "cuda" if torch.cuda.is_available() else "cpu"
alphas = np.linspace(0, 1, num=20)
interpolate_func = interpolate_with_boundaries # default
if args.target_latents: # if provided with targets
interpolate_func = interpolate_with_target_latents
if args.unedited_frames: # if only interpolating through generators
interpolate_func = duplicate_latent
latents = interpolate_func(args, source_latent, alphas)
segments = len(g_ema_list) - 1
if segments:
segment_length = len(latents) / segments
g_ema = copy.deepcopy(g_ema_list[0])
src_pars = dict(g_ema.named_parameters())
mix_pars = [dict(model.named_parameters()) for model in g_ema_list]
else:
g_ema = g_ema_list[0]
print("Generating frames for video...")
for idx, latent in tqdm(enumerate(latents), total=len(latents)):
if segments:
mix_alpha = (idx % segment_length) * 1.0 / segment_length
segment_id = int(idx // segment_length)
for k in src_pars.keys():
src_pars[k].data.copy_(mix_pars[segment_id][k] * (1 - mix_alpha) + mix_pars[segment_id + 1][k] * mix_alpha)
if idx == 0 or segments or latent is not latents[idx - 1]:
w = torch.from_numpy(latent).float().to(device)
with torch.no_grad():
img, _ = g_ema([w], input_is_latent=True, truncation=1, randomize_noise=False)
utils.save_image(img, f"{output_dir}/{str(idx).zfill(3)}.jpg", nrow=1, normalize=True, scale_each=True, range=(-1, 1))
def interpolate_forward_backward(source_latent, target_latent, alphas):
latents_forward = [a * target_latent + (1-a) * source_latent for a in alphas] # interpolate from source to target
latents_backward = latents_forward[::-1] # interpolate from target to source
return latents_forward + [target_latent] * 20 + latents_backward # forward + short delay at target + return
def duplicate_latent(args, source_latent, alphas):
return [source_latent for _ in range(args.unedited_frames)]
def interpolate_with_boundaries(args, source_latent, alphas):
edit_directions = args.edit_directions or ['pose', 'smile', 'gender', 'age', 'hair_length']
# interpolate latent codes with all targets
print("Interpolating latent codes...")
boundary_dir = Path(os.path.abspath(__file__)).parents[1].joinpath("editing", "interfacegan_boundaries")
boundaries_and_distances = []
for direction_type in edit_directions:
distances = SUGGESTED_DISTANCES[direction_type]
boundary = torch.load(os.path.join(boundary_dir, f'{direction_type}.pt')).cpu().detach().numpy()
for distance in distances:
if distance:
boundaries_and_distances.append((boundary, distance))
latents = []
for boundary, distance in boundaries_and_distances:
target_latent = project_code(source_latent, boundary, distance)
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
return latents
def interpolate_with_target_latents(args, source_latent, alphas):
# interpolate latent codes with all targets
print("Interpolating latent codes...")
latents = []
for target_latent_path in args.target_latents:
if target_latent_path == args.source_latent:
continue
target_latent = np.load(target_latent_path, allow_pickle=True)
latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))
return latents
def video_from_interpolations(fps, output_dir):
# combine frames to a video
command = ["ffmpeg",
"-r", f"{fps}",
"-i", f"{output_dir}/%03d.jpg",
"-c:v", "libx264",
"-vf", f"fps={fps}",
"-pix_fmt", "yuv420p",
f"{output_dir}/out.mp4"]
subprocess.call(command)
def merge_videos(output_dir, num_subdirs):
output_file = os.path.join(output_dir, "combined.mp4")
if num_subdirs == 1: # if we only have one video, just copy it over
shutil.copy2(os.path.join(output_dir, str(0), "out.mp4"), output_file)
else: # otherwise merge using ffmpeg
command = ["ffmpeg"]
for dir in range(num_subdirs):
command.extend(['-i', os.path.join(output_dir, str(dir), "out.mp4")])
sqrt_subdirs = int(num_subdirs ** .5)
if (sqrt_subdirs ** 2) != num_subdirs:
raise ValueError("Number of checkpoints cannot be arranged in a square grid")
command.append("-filter_complex")
filter_string = ""
vstack_string = ""
for row in range(sqrt_subdirs):
row_str = ""
for col in range(sqrt_subdirs):
row_str += f"[{row * sqrt_subdirs + col}:v]"
letter = chr(ord('A')+row)
row_str += f"hstack=inputs={sqrt_subdirs}[{letter}];"
vstack_string += f"[{letter}]"
filter_string += row_str
vstack_string += f"vstack=inputs={sqrt_subdirs}[out]"
filter_string += vstack_string
command.extend([filter_string, "-map", "[out]", output_file])
subprocess.call(command)
def vid_to_gif(vid_path, output_dir, scale=256, fps=35):
command = ["ffmpeg",
"-i", f"{vid_path}",
"-vf", f"fps={fps},scale={scale}:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1]fifo[s2];[s2][p]paletteuse",
"-loop", "0",
f"{output_dir}/out.gif"]
subprocess.call(command)
if __name__ == '__main__':
device = "cuda" if torch.cuda.is_available() else "cpu"
parser = argparse.ArgumentParser()
parser.add_argument('--size', type=int, default=1024)
parser.add_argument('--ckpt', type=str, nargs="+", required=True, help="Path to one or more pre-trained generator checkpoints.")
parser.add_argument('--channel_multiplier', type=int, default=2)
parser.add_argument('--out_dir', type=str, required=True, help="Directory where output files will be placed")
parser.add_argument('--source_latent', type=str, required=True, help="Path to an .npy file containing an initial latent code")
parser.add_argument('--target_latents', nargs="+", type=str, help="A list of paths to .npy files containing target latent codes to interpolate towards, or a directory containing such .npy files.")
parser.add_argument('--force', '-f', action='store_true', help="Force run with non-empty directory. Image files not overwritten by the proccess may still be included in the final video")
parser.add_argument('--fps', default=35, type=int, help='Frames per second in the generated videos.')
parser.add_argument('--edit_directions', nargs="+", type=str, help=f"A list of edit directions to use in video generation (if not using a target latent directory). Available directions are: {VALID_EDITS}")
parser.add_argument('--unedited_frames', type=int, default=0, help="Used to generate videos with no latent editing. If set to a positive number and target_latents is not provided, will simply duplicate the initial frame <unedited_frames> times.")
args = parser.parse_args()
os.makedirs(args.out_dir, exist_ok=True)
if not args.force and os.listdir(args.out_dir):
print("Output directory is not empty. Either delete the directory content or re-run with -f.")
exit(0)
if args.target_latents and len(args.target_latents) == 1 and os.path.isdir(args.target_latents[0]):
args.target_latents = [os.path.join(args.target_latents[0], file_name) for file_name in os.listdir(args.target_latents[0]) if file_name.endswith(".npy")]
args.target_latents = sorted(args.target_latents)
args.latent = 512
args.n_mlp = 8
g_ema = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
source_latent = np.load(args.source_latent, allow_pickle=True)
for idx, ckpt_path in enumerate(args.ckpt):
print(f"Generating video using checkpoint: {ckpt_path}")
checkpoint = torch.load(ckpt_path)
g_ema.load_state_dict(checkpoint['g_ema'])
output_dir = os.path.join(args.out_dir, str(idx))
os.makedirs(output_dir)
generate_frames(args, source_latent, [g_ema], output_dir)
video_from_interpolations(args.fps, output_dir)
merge_videos(args.out_dir, len(args.ckpt))
|