File size: 10,191 Bytes
3a19a1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720df82
 
3a19a1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720df82
3a19a1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720df82
3a19a1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
'''
Tool for generating editing videos across different domains.

Given a set of latent codes and pre-trained models, it will interpolate between the different codes in each of the target domains
and combine the resulting images into a video.

Example run command:

python generate_videos.py --ckpt /model_dir/pixar.pt \
                                 /model_dir/ukiyoe.pt \
                                 /model_dir/edvard_munch.pt \
                                 /model_dir/botero.pt \
                          --out_dir /output/video/ \
                          --source_latent /latents/latent000.npy \
                          --target_latents /latents/

'''

import os
import argparse

import torch
from torchvision import utils

from model.sg2_model import Generator
from tqdm import tqdm
from pathlib import Path

import numpy as np

import subprocess
import shutil
import copy

VALID_EDITS = ["pose", "age", "smile", "gender", "hair_length", "beard"]

SUGGESTED_DISTANCES = {
                       "pose": (3.0, -3.0),
                       "smile": (2.0, -2.0),
                       "age": (4.0, -4.0),
                       "gender": (3.0, -3.0),
                       "hair_length": (None, -4.0),
                       "beard": (2.0, None)
                      }
                    
def project_code(latent_code, boundary, distance=3.0):

    if len(boundary) == 2:
        boundary = boundary.reshape(1, 1, -1)

    return latent_code + distance * boundary

def generate_frames(args, source_latent, g_ema_list, output_dir):

    device = "cuda" if torch.cuda.is_available() else "cpu"

    alphas = np.linspace(0, 1, num=20)
    
    interpolate_func = interpolate_with_boundaries # default
    if args.target_latents:                        # if provided with targets
        interpolate_func = interpolate_with_target_latents
    if args.unedited_frames:                       # if only interpolating through generators
        interpolate_func = duplicate_latent

    latents = interpolate_func(args, source_latent, alphas)

    segments = len(g_ema_list) - 1
    if segments:
        segment_length = len(latents) / segments

        g_ema = copy.deepcopy(g_ema_list[0])

        src_pars = dict(g_ema.named_parameters())
        mix_pars = [dict(model.named_parameters()) for model in g_ema_list]
    else:
        g_ema = g_ema_list[0]

    print("Generating frames for video...")
    for idx, latent in tqdm(enumerate(latents), total=len(latents)):

        if segments:
            mix_alpha = (idx % segment_length) * 1.0 / segment_length
            segment_id = int(idx // segment_length)

            for k in src_pars.keys():
                src_pars[k].data.copy_(mix_pars[segment_id][k] * (1 - mix_alpha) + mix_pars[segment_id + 1][k] * mix_alpha)

        if idx == 0 or segments or latent is not latents[idx - 1]:
            w = torch.from_numpy(latent).float().to(device)

            with torch.no_grad():
                img, _ = g_ema([w], input_is_latent=True, truncation=1, randomize_noise=False)

        utils.save_image(img, f"{output_dir}/{str(idx).zfill(3)}.jpg", nrow=1, normalize=True, scale_each=True, range=(-1, 1))

def interpolate_forward_backward(source_latent, target_latent, alphas):
    latents_forward  = [a * target_latent + (1-a) * source_latent for a in alphas] # interpolate from source to target
    latents_backward = latents_forward[::-1]                                       # interpolate from target to source
    return latents_forward + [target_latent] * 20 + latents_backward               # forward + short delay at target + return

def duplicate_latent(args, source_latent, alphas):
    return [source_latent for _ in range(args.unedited_frames)]

def interpolate_with_boundaries(args, source_latent, alphas):
    edit_directions = args.edit_directions or ['pose', 'smile', 'gender', 'age', 'hair_length']
    
    # interpolate latent codes with all targets

    print("Interpolating latent codes...")

    boundary_dir = Path(os.path.abspath(__file__)).parents[1].joinpath("editing", "interfacegan_boundaries")

    boundaries_and_distances = []
    for direction_type in edit_directions:
        distances = SUGGESTED_DISTANCES[direction_type]
        boundary = torch.load(os.path.join(boundary_dir, f'{direction_type}.pt')).cpu().detach().numpy()

        for distance in distances:
            if distance:
                boundaries_and_distances.append((boundary, distance))

    latents = []
    for boundary, distance in boundaries_and_distances:
        
        target_latent = project_code(source_latent, boundary, distance)
        latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas)) 

    return latents

def interpolate_with_target_latents(args, source_latent, alphas):    
    # interpolate latent codes with all targets

    print("Interpolating latent codes...")
    
    latents = []
    for target_latent_path in args.target_latents:
        
        if target_latent_path == args.source_latent:
            continue

        target_latent = np.load(target_latent_path, allow_pickle=True)

        latents.extend(interpolate_forward_backward(source_latent, target_latent, alphas))

    return latents

def video_from_interpolations(fps, output_dir):

    # combine frames to a video
    command = ["ffmpeg", 
               "-r", f"{fps}", 
               "-i", f"{output_dir}/%03d.jpg", 
               "-c:v", "libx264", 
               "-vf", f"fps={fps}", 
               "-pix_fmt", "yuv420p", 
               f"{output_dir}/out.mp4"]
    
    subprocess.call(command)

def merge_videos(output_dir, num_subdirs):

    output_file = os.path.join(output_dir, "combined.mp4")

    if num_subdirs == 1: # if we only have one video, just copy it over
        shutil.copy2(os.path.join(output_dir, str(0), "out.mp4"), output_file)
    else:                # otherwise merge using ffmpeg
        command = ["ffmpeg"]
        for dir in range(num_subdirs):
            command.extend(['-i', os.path.join(output_dir, str(dir), "out.mp4")])
        
        sqrt_subdirs = int(num_subdirs ** .5)

        if (sqrt_subdirs ** 2) != num_subdirs:
            raise ValueError("Number of checkpoints cannot be arranged in a square grid")
        
        command.append("-filter_complex")

        filter_string = ""
        vstack_string = ""
        for row in range(sqrt_subdirs):
            row_str = ""
            for col in range(sqrt_subdirs):
                row_str += f"[{row * sqrt_subdirs + col}:v]"

            letter = chr(ord('A')+row)
            row_str += f"hstack=inputs={sqrt_subdirs}[{letter}];"
            vstack_string += f"[{letter}]"

            filter_string += row_str
        
        vstack_string += f"vstack=inputs={sqrt_subdirs}[out]"
        filter_string += vstack_string

        command.extend([filter_string, "-map", "[out]", output_file])

        subprocess.call(command)

def vid_to_gif(vid_path, output_dir, scale=256, fps=35):

    command = ["ffmpeg", 
               "-i", f"{vid_path}", 
               "-vf", f"fps={fps},scale={scale}:-1:flags=lanczos,split[s0][s1];[s0]palettegen[p];[s1]fifo[s2];[s2][p]paletteuse",  
               "-loop", "0",
               f"{output_dir}/out.gif"]
    
    subprocess.call(command)


if __name__ == '__main__':
    device = "cuda" if torch.cuda.is_available() else "cpu"

    parser = argparse.ArgumentParser()

    parser.add_argument('--size', type=int, default=1024)
    parser.add_argument('--ckpt', type=str, nargs="+", required=True, help="Path to one or more pre-trained generator checkpoints.")
    parser.add_argument('--channel_multiplier', type=int, default=2)
    parser.add_argument('--out_dir', type=str, required=True, help="Directory where output files will be placed")
    parser.add_argument('--source_latent', type=str, required=True, help="Path to an .npy file containing an initial latent code")
    parser.add_argument('--target_latents', nargs="+", type=str, help="A list of paths to .npy files containing target latent codes to interpolate towards, or a directory containing such .npy files.")
    parser.add_argument('--force', '-f', action='store_true', help="Force run with non-empty directory. Image files not overwritten by the proccess may still be included in the final video")
    parser.add_argument('--fps', default=35, type=int, help='Frames per second in the generated videos.')
    parser.add_argument('--edit_directions', nargs="+", type=str, help=f"A list of edit directions to use in video generation (if not using a target latent directory). Available directions are: {VALID_EDITS}")
    parser.add_argument('--unedited_frames', type=int, default=0, help="Used to generate videos with no latent editing. If set to a positive number and target_latents is not provided, will simply duplicate the initial frame <unedited_frames> times.")
    
    args = parser.parse_args()

    os.makedirs(args.out_dir, exist_ok=True)

    if not args.force and os.listdir(args.out_dir):
        print("Output directory is not empty. Either delete the directory content or re-run with -f.")
        exit(0)

    if args.target_latents and len(args.target_latents) == 1 and os.path.isdir(args.target_latents[0]):
        args.target_latents = [os.path.join(args.target_latents[0], file_name) for file_name in os.listdir(args.target_latents[0]) if file_name.endswith(".npy")]
        args.target_latents = sorted(args.target_latents)

    args.latent = 512
    args.n_mlp = 8

    g_ema = Generator(
        args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
    ).to(device)

    source_latent = np.load(args.source_latent, allow_pickle=True)

    for idx, ckpt_path in enumerate(args.ckpt):
        print(f"Generating video using checkpoint: {ckpt_path}")
        checkpoint = torch.load(ckpt_path)

        g_ema.load_state_dict(checkpoint['g_ema'])

        output_dir = os.path.join(args.out_dir, str(idx))
        os.makedirs(output_dir)

        generate_frames(args, source_latent, [g_ema], output_dir)
        video_from_interpolations(args.fps, output_dir)

    merge_videos(args.out_dir, len(args.ckpt))