File size: 30,307 Bytes
932ae62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import comfy.supported_models
import comfy.supported_models_base
import comfy.utils
import math
import logging
import torch

def count_blocks(state_dict_keys, prefix_string):
    count = 0
    while True:
        c = False
        for k in state_dict_keys:
            if k.startswith(prefix_string.format(count)):
                c = True
                break
        if c == False:
            break
        count += 1
    return count

def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
    context_dim = None
    use_linear_in_transformer = False

    transformer_prefix = prefix + "1.transformer_blocks."
    transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
    if len(transformer_keys) > 0:
        last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
        context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
        use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
        time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
        time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict
        return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross
    return None

def detect_unet_config(state_dict, key_prefix):
    state_dict_keys = list(state_dict.keys())

    if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model
        unet_config = {}
        unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1]
        patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2]
        unet_config["patch_size"] = patch_size
        final_layer = '{}final_layer.linear.weight'.format(key_prefix)
        if final_layer in state_dict:
            unet_config["out_channels"] = state_dict[final_layer].shape[0] // (patch_size * patch_size)

        unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64
        unet_config["input_size"] = None
        y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix)
        if y_key in state_dict_keys:
            unet_config["adm_in_channels"] = state_dict[y_key].shape[1]

        context_key = '{}context_embedder.weight'.format(key_prefix)
        if context_key in state_dict_keys:
            in_features = state_dict[context_key].shape[1]
            out_features = state_dict[context_key].shape[0]
            unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}}
        num_patches_key = '{}pos_embed'.format(key_prefix)
        if num_patches_key in state_dict_keys:
            num_patches = state_dict[num_patches_key].shape[1]
            unet_config["num_patches"] = num_patches
            unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches))

        rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix)
        if rms_qk in state_dict_keys:
            unet_config["qk_norm"] = "rms"

        unet_config["pos_embed_scaling_factor"] = None #unused for inference
        context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix)
        if context_processor in state_dict_keys:
            unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.')
        return unet_config

    if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
        unet_config = {}
        text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix)
        if text_mapper_name in state_dict_keys:
            unet_config['stable_cascade_stage'] = 'c'
            w = state_dict[text_mapper_name]
            if w.shape[0] == 1536: #stage c lite
                unet_config['c_cond'] = 1536
                unet_config['c_hidden'] = [1536, 1536]
                unet_config['nhead'] = [24, 24]
                unet_config['blocks'] = [[4, 12], [12, 4]]
            elif w.shape[0] == 2048: #stage c full
                unet_config['c_cond'] = 2048
        elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys:
            unet_config['stable_cascade_stage'] = 'b'
            w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)]
            if w.shape[-1] == 640:
                unet_config['c_hidden'] = [320, 640, 1280, 1280]
                unet_config['nhead'] = [-1, -1, 20, 20]
                unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]]
                unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]]
            elif w.shape[-1] == 576: #stage b lite
                unet_config['c_hidden'] = [320, 576, 1152, 1152]
                unet_config['nhead'] = [-1, 9, 18, 18]
                unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]]
                unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]]
        return unet_config

    if '{}transformer.rotary_pos_emb.inv_freq'.format(key_prefix) in state_dict_keys: #stable audio dit
        unet_config = {}
        unet_config["audio_model"] = "dit1.0"
        return unet_config

    if '{}double_layers.0.attn.w1q.weight'.format(key_prefix) in state_dict_keys: #aura flow dit
        unet_config = {}
        unet_config["max_seq"] = state_dict['{}positional_encoding'.format(key_prefix)].shape[1]
        unet_config["cond_seq_dim"] = state_dict['{}cond_seq_linear.weight'.format(key_prefix)].shape[1]
        double_layers = count_blocks(state_dict_keys, '{}double_layers.'.format(key_prefix) + '{}.')
        single_layers = count_blocks(state_dict_keys, '{}single_layers.'.format(key_prefix) + '{}.')
        unet_config["n_double_layers"] = double_layers
        unet_config["n_layers"] = double_layers + single_layers
        return unet_config

    if '{}mlp_t5.0.weight'.format(key_prefix) in state_dict_keys: #Hunyuan DiT
        unet_config = {}
        unet_config["image_model"] = "hydit"
        unet_config["depth"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.')
        unet_config["hidden_size"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0]
        if unet_config["hidden_size"] == 1408 and unet_config["depth"] == 40: #DiT-g/2
            unet_config["mlp_ratio"] = 4.3637
        if state_dict['{}extra_embedder.0.weight'.format(key_prefix)].shape[1] == 3968:
            unet_config["size_cond"] = True
            unet_config["use_style_cond"] = True
            unet_config["image_model"] = "hydit1"
        return unet_config

    if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux
        dit_config = {}
        dit_config["image_model"] = "flux"
        dit_config["in_channels"] = 16
        dit_config["vec_in_dim"] = 768
        dit_config["context_in_dim"] = 4096
        dit_config["hidden_size"] = 3072
        dit_config["mlp_ratio"] = 4.0
        dit_config["num_heads"] = 24
        dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
        dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
        dit_config["axes_dim"] = [16, 56, 56]
        dit_config["theta"] = 10000
        dit_config["qkv_bias"] = True
        dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
        return dit_config

    if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
        return None

    unet_config = {
        "use_checkpoint": False,
        "image_size": 32,
        "use_spatial_transformer": True,
        "legacy": False
    }

    y_input = '{}label_emb.0.0.weight'.format(key_prefix)
    if y_input in state_dict_keys:
        unet_config["num_classes"] = "sequential"
        unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
    else:
        unet_config["adm_in_channels"] = None

    model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
    in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]

    out_key = '{}out.2.weight'.format(key_prefix)
    if out_key in state_dict:
        out_channels = state_dict[out_key].shape[0]
    else:
        out_channels = 4

    num_res_blocks = []
    channel_mult = []
    attention_resolutions = []
    transformer_depth = []
    transformer_depth_output = []
    context_dim = None
    use_linear_in_transformer = False

    video_model = False
    video_model_cross = False

    current_res = 1
    count = 0

    last_res_blocks = 0
    last_channel_mult = 0

    input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
    for count in range(input_block_count):
        prefix = '{}input_blocks.{}.'.format(key_prefix, count)
        prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)

        block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
        if len(block_keys) == 0:
            break

        block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))

        if "{}0.op.weight".format(prefix) in block_keys: #new layer
            num_res_blocks.append(last_res_blocks)
            channel_mult.append(last_channel_mult)

            current_res *= 2
            last_res_blocks = 0
            last_channel_mult = 0
            out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
            if out is not None:
                transformer_depth_output.append(out[0])
            else:
                transformer_depth_output.append(0)
        else:
            res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
            if res_block_prefix in block_keys:
                last_res_blocks += 1
                last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels

                out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
                if out is not None:
                    transformer_depth.append(out[0])
                    if context_dim is None:
                        context_dim = out[1]
                        use_linear_in_transformer = out[2]
                        video_model = out[3]
                        video_model_cross = out[4]
                else:
                    transformer_depth.append(0)

            res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
            if res_block_prefix in block_keys_output:
                out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
                if out is not None:
                    transformer_depth_output.append(out[0])
                else:
                    transformer_depth_output.append(0)


    num_res_blocks.append(last_res_blocks)
    channel_mult.append(last_channel_mult)
    if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
        transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
    elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys:
        transformer_depth_middle = -1
    else:
        transformer_depth_middle = -2

    unet_config["in_channels"] = in_channels
    unet_config["out_channels"] = out_channels
    unet_config["model_channels"] = model_channels
    unet_config["num_res_blocks"] = num_res_blocks
    unet_config["transformer_depth"] = transformer_depth
    unet_config["transformer_depth_output"] = transformer_depth_output
    unet_config["channel_mult"] = channel_mult
    unet_config["transformer_depth_middle"] = transformer_depth_middle
    unet_config['use_linear_in_transformer'] = use_linear_in_transformer
    unet_config["context_dim"] = context_dim

    if video_model:
        unet_config["extra_ff_mix_layer"] = True
        unet_config["use_spatial_context"] = True
        unet_config["merge_strategy"] = "learned_with_images"
        unet_config["merge_factor"] = 0.0
        unet_config["video_kernel_size"] = [3, 1, 1]
        unet_config["use_temporal_resblock"] = True
        unet_config["use_temporal_attention"] = True
        unet_config["disable_temporal_crossattention"] = not video_model_cross
    else:
        unet_config["use_temporal_resblock"] = False
        unet_config["use_temporal_attention"] = False

    return unet_config

def model_config_from_unet_config(unet_config, state_dict=None):
    for model_config in comfy.supported_models.models:
        if model_config.matches(unet_config, state_dict):
            return model_config(unet_config)

    logging.error("no match {}".format(unet_config))
    return None

def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False):
    unet_config = detect_unet_config(state_dict, unet_key_prefix)
    if unet_config is None:
        return None
    model_config = model_config_from_unet_config(unet_config, state_dict)
    if model_config is None and use_base_if_no_match:
        return comfy.supported_models_base.BASE(unet_config)
    else:
        return model_config

def unet_prefix_from_state_dict(state_dict):
    candidates = ["model.diffusion_model.", #ldm/sgm models
                  "model.model.", #audio models
                  ]
    counts = {k: 0 for k in candidates}
    for k in state_dict:
        for c in candidates:
            if k.startswith(c):
                counts[c] += 1
                break

    top = max(counts, key=counts.get)
    if counts[top] > 5:
        return top
    else:
        return "model." #aura flow and others


def convert_config(unet_config):
    new_config = unet_config.copy()
    num_res_blocks = new_config.get("num_res_blocks", None)
    channel_mult = new_config.get("channel_mult", None)

    if isinstance(num_res_blocks, int):
        num_res_blocks = len(channel_mult) * [num_res_blocks]

    if "attention_resolutions" in new_config:
        attention_resolutions = new_config.pop("attention_resolutions")
        transformer_depth = new_config.get("transformer_depth", None)
        transformer_depth_middle = new_config.get("transformer_depth_middle", None)

        if isinstance(transformer_depth, int):
            transformer_depth = len(channel_mult) * [transformer_depth]
        if transformer_depth_middle is None:
            transformer_depth_middle =  transformer_depth[-1]
        t_in = []
        t_out = []
        s = 1
        for i in range(len(num_res_blocks)):
            res = num_res_blocks[i]
            d = 0
            if s in attention_resolutions:
                d = transformer_depth[i]

            t_in += [d] * res
            t_out += [d] * (res + 1)
            s *= 2
        transformer_depth = t_in
        transformer_depth_output = t_out
        new_config["transformer_depth"] = t_in
        new_config["transformer_depth_output"] = t_out
        new_config["transformer_depth_middle"] = transformer_depth_middle

    new_config["num_res_blocks"] = num_res_blocks
    return new_config


def unet_config_from_diffusers_unet(state_dict, dtype=None):
    match = {}
    transformer_depth = []

    attn_res = 1
    down_blocks = count_blocks(state_dict, "down_blocks.{}")
    for i in range(down_blocks):
        attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
        res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}')
        for ab in range(attn_blocks):
            transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
            transformer_depth.append(transformer_count)
            if transformer_count > 0:
                match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]

        attn_res *= 2
        if attn_blocks == 0:
            for i in range(res_blocks):
                transformer_depth.append(0)

    match["transformer_depth"] = transformer_depth

    match["model_channels"] = state_dict["conv_in.weight"].shape[0]
    match["in_channels"] = state_dict["conv_in.weight"].shape[1]
    match["adm_in_channels"] = None
    if "class_embedding.linear_1.weight" in state_dict:
        match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
    elif "add_embedding.linear_1.weight" in state_dict:
        match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]

    SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
            'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
            'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
            'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4,
                    'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}

    SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2],
            'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True,
            'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
            'use_temporal_attention': False, 'use_temporal_resblock': False}

    SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
                    'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}

    SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
                    'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}

    SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
            'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
            'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
            'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
            'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                     'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                     'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1,
                     'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
                     'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                       'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                       'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0,
                       'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
                       'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
                              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
                              'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
                              'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_diffusers_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320,
                              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
                              'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
                              'use_temporal_attention': False, 'use_temporal_resblock': False}

    SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4],
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}

    Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2],
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}

    KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5],
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}

    KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6],
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}

    SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1],
            'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True,
            'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1],
            'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]}

    SD_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1],
            'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False,
            'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1],
            'use_temporal_attention': False, 'use_temporal_resblock': False}


    supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p]

    for unet_config in supported_models:
        matches = True
        for k in match:
            if match[k] != unet_config[k]:
                matches = False
                break
        if matches:
            return convert_config(unet_config)
    return None

def model_config_from_diffusers_unet(state_dict):
    unet_config = unet_config_from_diffusers_unet(state_dict)
    if unet_config is not None:
        return model_config_from_unet_config(unet_config)
    return None

def convert_diffusers_mmdit(state_dict, output_prefix=""):
    out_sd = {}

    if 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3
        num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
        depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
        sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)
    elif 'joint_transformer_blocks.0.attn.add_k_proj.weight' in state_dict: #AuraFlow
        num_joint = count_blocks(state_dict, 'joint_transformer_blocks.{}.')
        num_single = count_blocks(state_dict, 'single_transformer_blocks.{}.')
        sd_map = comfy.utils.auraflow_to_diffusers({"n_double_layers": num_joint, "n_layers": num_joint + num_single}, output_prefix=output_prefix)
    else:
        return None

    for k in sd_map:
        weight = state_dict.get(k, None)
        if weight is not None:
            t = sd_map[k]

            if not isinstance(t, str):
                if len(t) > 2:
                    fun = t[2]
                else:
                    fun = lambda a: a
                offset = t[1]
                if offset is not None:
                    old_weight = out_sd.get(t[0], None)
                    if old_weight is None:
                        old_weight = torch.empty_like(weight)
                        old_weight = old_weight.repeat([3] + [1] * (len(old_weight.shape) - 1))

                    w = old_weight.narrow(offset[0], offset[1], offset[2])
                else:
                    old_weight = weight
                    w = weight
                w[:] = fun(weight)
                t = t[0]
                out_sd[t] = old_weight
            else:
                out_sd[t] = weight
            state_dict.pop(k)

    return out_sd