Spaces:
Sleeping
Sleeping
File size: 15,423 Bytes
626eca0 8197b11 626eca0 8197b11 626eca0 8197b11 626eca0 8197b11 626eca0 8197b11 626eca0 8197b11 626eca0 8197b11 626eca0 8197b11 626eca0 8197b11 626eca0 8197b11 626eca0 8197b11 626eca0 8197b11 626eca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import contextlib
import logging
import math
import os
from dataclasses import dataclass
from typing import Callable, List, Optional, Union
import numpy
import psutil
import torch
from relik.retriever.pytorch_modules import RetrievedSample
from torch.utils.data import DataLoader
from tqdm import tqdm
from relik.common.log import get_logger
from relik.common.utils import is_package_available
from relik.retriever.common.model_inputs import ModelInputs
from relik.retriever.data.base.datasets import BaseDataset
from relik.retriever.data.labels import Labels
from relik.retriever.indexers.base import BaseDocumentIndex
from relik.retriever.pytorch_modules import PRECISION_MAP
from relik.retriever.pytorch_modules.model import GoldenRetriever
if is_package_available("faiss"):
import faiss
import faiss.contrib.torch_utils
logger = get_logger(__name__, level=logging.INFO)
@dataclass
class FaissOutput:
indices: Union[torch.Tensor, numpy.ndarray]
distances: Union[torch.Tensor, numpy.ndarray]
class FaissDocumentIndex(BaseDocumentIndex):
DOCUMENTS_FILE_NAME = "documents.json"
EMBEDDINGS_FILE_NAME = "embeddings.pt"
INDEX_FILE_NAME = "index.faiss"
def __init__(
self,
documents: Union[List[str], Labels],
embeddings: Optional[Union[torch.Tensor, numpy.ndarray]] = None,
index=None,
index_type: str = "Flat",
nprobe: int = 1,
metric: int = faiss.METRIC_INNER_PRODUCT,
normalize: bool = False,
device: str = "cpu",
name_or_dir: Optional[Union[str, os.PathLike]] = None,
*args,
**kwargs,
) -> None:
super().__init__(documents, embeddings, name_or_dir)
if embeddings is not None and documents is not None:
logger.info("Both documents and embeddings are provided.")
if documents.get_label_size() != embeddings.shape[0]:
raise ValueError(
"The number of documents and embeddings must be the same."
)
faiss.omp_set_num_threads(psutil.cpu_count(logical=False))
# device to store the embeddings
self.device = device
# params
self.index_type = index_type
self.metric = metric
self.normalize = normalize
if index is not None:
self.embeddings = index
if self.device == "cuda":
# use a single GPU
faiss_resource = faiss.StandardGpuResources()
self.embeddings = faiss.index_cpu_to_gpu(
faiss_resource, 0, self.embeddings
)
else:
if embeddings is not None:
# build the faiss index
logger.info("Building the index from the embeddings.")
self.embeddings = self._build_faiss_index(
embeddings=embeddings,
index_type=index_type,
nprobe=nprobe,
normalize=normalize,
metric=metric,
)
def _build_faiss_index(
self,
embeddings: Optional[Union[torch.Tensor, numpy.ndarray]],
index_type: str,
nprobe: int,
normalize: bool,
metric: int,
):
# build the faiss index
self.normalize = (
normalize
and metric == faiss.METRIC_INNER_PRODUCT
and not isinstance(embeddings, torch.Tensor)
)
if self.normalize:
index_type = f"L2norm,{index_type}"
faiss_vector_size = embeddings.shape[1]
# if self.device == "cpu":
# index_type = index_type.replace("x,", "x_HNSW32,")
# nlist = math.ceil(math.sqrt(faiss_vector_size)) * 4
# # nlist = 8
# index_type = index_type.replace(
# "x", str(nlist)
# )
# print("Current nlist:", nlist)
print("Current index:", index_type)
self.embeddings = faiss.index_factory(faiss_vector_size, index_type, metric)
# convert to GPU
if self.device == "cuda":
# use a single GPU
faiss_resource = faiss.StandardGpuResources()
self.embeddings = faiss.index_cpu_to_gpu(faiss_resource, 0, self.embeddings)
else:
# move to CPU if embeddings is a torch.Tensor
embeddings = (
embeddings.cpu() if isinstance(embeddings, torch.Tensor) else embeddings
)
self.embeddings.hnsw.efConstruction = 20
# convert to float32 if embeddings is a torch.Tensor and is float16
if isinstance(embeddings, torch.Tensor) and embeddings.dtype == torch.float16:
embeddings = embeddings.float()
logger.info("Training the index.")
self.embeddings.train(embeddings)
logger.info("Adding the embeddings to the index.")
self.embeddings.add(embeddings)
self.embeddings.nprobe = nprobe
# self.embeddings.hnsw.efSearch
self.embeddings.hnsw.efSearch = 256
# self.embeddings.k_factor = 10
# save parameters for saving/loading
self.index_type = index_type
self.metric = metric
# clear the embeddings to free up memory
embeddings = None
return self.embeddings
@torch.no_grad()
@torch.inference_mode()
def index(
self,
retriever: GoldenRetriever,
documents: Optional[List[str]] = None,
batch_size: int = 32,
num_workers: int = 4,
max_length: Optional[int] = None,
collate_fn: Optional[Callable] = None,
encoder_precision: Optional[Union[str, int]] = None,
compute_on_cpu: bool = False,
force_reindex: bool = False,
*args,
**kwargs,
) -> "FaissDocumentIndex":
"""
Index the documents using the encoder.
Args:
retriever (:obj:`torch.nn.Module`):
The encoder to be used for indexing.
documents (:obj:`List[str]`, `optional`, defaults to None):
The documents to be indexed.
batch_size (:obj:`int`, `optional`, defaults to 32):
The batch size to be used for indexing.
num_workers (:obj:`int`, `optional`, defaults to 4):
The number of workers to be used for indexing.
max_length (:obj:`int`, `optional`, defaults to None):
The maximum length of the input to the encoder.
collate_fn (:obj:`Callable`, `optional`, defaults to None):
The collate function to be used for batching.
encoder_precision (:obj:`Union[str, int]`, `optional`, defaults to None):
The precision to be used for the encoder.
compute_on_cpu (:obj:`bool`, `optional`, defaults to False):
Whether to compute the embeddings on CPU.
force_reindex (:obj:`bool`, `optional`, defaults to False):
Whether to force reindexing.
Returns:
:obj:`InMemoryIndexer`: The indexer object.
"""
if self.embeddings is not None and not force_reindex:
logger.log(
"Embeddings are already present and `force_reindex` is `False`. Skipping indexing."
)
if documents is None:
return self
# release the memory
if collate_fn is None:
tokenizer = retriever.passage_tokenizer
def collate_fn(x):
return ModelInputs(
tokenizer(
x,
padding=True,
return_tensors="pt",
truncation=True,
max_length=max_length or tokenizer.model_max_length,
)
)
if force_reindex:
if documents is not None:
self.documents.add_labels(documents)
data = [k for k in self.documents.get_labels()]
else:
if documents is not None:
data = [k for k in Labels(documents).get_labels()]
else:
return self
dataloader = DataLoader(
BaseDataset(name="passage", data=data),
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=False,
collate_fn=collate_fn,
)
encoder = retriever.passage_encoder
# Create empty lists to store the passage embeddings and passage index
passage_embeddings: List[torch.Tensor] = []
encoder_device = "cpu" if compute_on_cpu else self.device
# fucking autocast only wants pure strings like 'cpu' or 'cuda'
# we need to convert the model device to that
device_type_for_autocast = str(encoder_device).split(":")[0]
# autocast doesn't work with CPU and stuff different from bfloat16
autocast_pssg_mngr = (
contextlib.nullcontext()
if device_type_for_autocast == "cpu"
else (
torch.autocast(
device_type=device_type_for_autocast,
dtype=PRECISION_MAP[encoder_precision],
)
)
)
with autocast_pssg_mngr:
# Iterate through each batch in the dataloader
for batch in tqdm(dataloader, desc="Indexing"):
# Move the batch to the device
batch: ModelInputs = batch.to(encoder_device)
# Compute the passage embeddings
passage_outs = encoder(**batch)
# Append the passage embeddings to the list
if self.device == "cpu":
passage_embeddings.extend([c.detach().cpu() for c in passage_outs])
else:
passage_embeddings.extend([c for c in passage_outs])
# move the passage embeddings to the CPU if not already done
passage_embeddings = [c.detach().cpu() for c in passage_embeddings]
# stack it
passage_embeddings: torch.Tensor = torch.stack(passage_embeddings, dim=0)
# convert to float32 for faiss
passage_embeddings.to(PRECISION_MAP["float32"])
# index the embeddings
self.embeddings = self._build_faiss_index(
embeddings=passage_embeddings,
index_type=self.index_type,
normalize=self.normalize,
metric=self.metric,
)
# free up memory from the unused variable
del passage_embeddings
return self
@torch.no_grad()
@torch.inference_mode()
def search(self, query: torch.Tensor, k: int = 1) -> list[list[RetrievedSample]]:
k = min(k, self.embeddings.ntotal)
if self.normalize:
faiss.normalize_L2(query)
if isinstance(query, torch.Tensor) and self.device == "cpu":
query = query.detach().cpu()
# Retrieve the indices of the top k passage embeddings
retriever_out = self.embeddings.search(query, k)
# get int values (second element of the tuple)
batch_top_k: List[List[int]] = retriever_out[1].detach().cpu().tolist()
# get float values (first element of the tuple)
batch_scores: List[List[float]] = retriever_out[0].detach().cpu().tolist()
# Retrieve the passages corresponding to the indices
batch_passages = [
[self.documents.get_label_from_index(i) for i in indices if i != -1]
for indices in batch_top_k
]
# build the output object
batch_retrieved_samples = [
[
RetrievedSample(label=passage, index=index, score=score)
for passage, index, score in zip(passages, indices, scores)
]
for passages, indices, scores in zip(
batch_passages, batch_top_k, batch_scores
)
]
return batch_retrieved_samples
# def save(self, saving_dir: Union[str, os.PathLike]):
# """
# Save the indexer to the disk.
# Args:
# saving_dir (:obj:`Union[str, os.PathLike]`):
# The directory where the indexer will be saved.
# """
# saving_dir = Path(saving_dir)
# # save the passage embeddings
# index_path = saving_dir / self.INDEX_FILE_NAME
# logger.info(f"Saving passage embeddings to {index_path}")
# faiss.write_index(self.embeddings, str(index_path))
# # save the passage index
# documents_path = saving_dir / self.DOCUMENTS_FILE_NAME
# logger.info(f"Saving passage index to {documents_path}")
# self.documents.save(documents_path)
# @classmethod
# def load(
# cls,
# loading_dir: Union[str, os.PathLike],
# device: str = "cpu",
# document_file_name: Optional[str] = None,
# embedding_file_name: Optional[str] = None,
# index_file_name: Optional[str] = None,
# **kwargs,
# ) -> "FaissDocumentIndex":
# loading_dir = Path(loading_dir)
# document_file_name = document_file_name or cls.DOCUMENTS_FILE_NAME
# embedding_file_name = embedding_file_name or cls.EMBEDDINGS_FILE_NAME
# index_file_name = index_file_name or cls.INDEX_FILE_NAME
# # load the documents
# documents_path = loading_dir / document_file_name
# if not documents_path.exists():
# raise ValueError(f"Document file `{documents_path}` does not exist.")
# logger.info(f"Loading documents from {documents_path}")
# documents = Labels.from_file(documents_path)
# index = None
# embeddings = None
# # try to load the index directly
# index_path = loading_dir / index_file_name
# if not index_path.exists():
# # try to load the embeddings
# embedding_path = loading_dir / embedding_file_name
# # run some checks
# if embedding_path.exists():
# logger.info(f"Loading embeddings from {embedding_path}")
# embeddings = torch.load(embedding_path, map_location="cpu")
# logger.warning(
# f"Index file `{index_path}` and embedding file `{embedding_path}` do not exist."
# )
# else:
# logger.info(f"Loading index from {index_path}")
# index = faiss.read_index(str(embedding_path))
# return cls(
# documents=documents,
# embeddings=embeddings,
# index=index,
# device=device,
# **kwargs,
# )
def get_embeddings_from_index(
self, index: int
) -> Union[torch.Tensor, numpy.ndarray]:
"""
Get the document vector from the index.
Args:
index (`int`):
The index of the document.
Returns:
`torch.Tensor`: The document vector.
"""
if self.embeddings is None:
raise ValueError(
"The documents must be indexed before they can be retrieved."
)
if index >= self.embeddings.ntotal:
raise ValueError(
f"The index {index} is out of bounds. The maximum index is {self.embeddings.ntotal}."
)
return self.embeddings.reconstruct(index)
|