Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,239 Bytes
262b155 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
# Authors: Hui Ren (rhfeiyang.github.io)
import os
import numpy as np
from torchvision import transforms
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.autograd import Function
from PIL import Image
from transformers import CLIPProcessor, CLIPModel
from collections import OrderedDict
from transformers import BatchFeature
import clip
import copy
import lpips
from transformers import ViTImageProcessor, ViTModel
## CSD_CLIP
def convert_weights_float(model: nn.Module):
"""Convert applicable model parameters to fp32"""
def _convert_weights_to_fp32(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.float()
if l.bias is not None:
l.bias.data = l.bias.data.float()
if isinstance(l, nn.MultiheadAttention):
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.float()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.float()
model.apply(_convert_weights_to_fp32)
class ReverseLayerF(Function):
@staticmethod
def forward(ctx, x, alpha):
ctx.alpha = alpha
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
output = grad_output.neg() * ctx.alpha
return output, None
## taken from https://github.com/moein-shariatnia/OpenAI-CLIP/blob/master/modules.py
class ProjectionHead(nn.Module):
def __init__(
self,
embedding_dim,
projection_dim,
dropout=0
):
super().__init__()
self.projection = nn.Linear(embedding_dim, projection_dim)
self.gelu = nn.GELU()
self.fc = nn.Linear(projection_dim, projection_dim)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(projection_dim)
def forward(self, x):
projected = self.projection(x)
x = self.gelu(projected)
x = self.fc(x)
x = self.dropout(x)
x = x + projected
x = self.layer_norm(x)
return x
def convert_state_dict(state_dict):
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if k.startswith("module."):
k = k.replace("module.", "")
new_state_dict[k] = v
return new_state_dict
def init_weights(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.normal_(m.bias, std=1e-6)
class Metric(nn.Module):
def __init__(self):
super().__init__()
self.image_preprocess = None
def load_image(self, image_path):
with open(image_path, 'rb') as f:
image = Image.open(f).convert("RGB")
return image
def load_image_path(self, image_path):
if isinstance(image_path, str):
# should be a image folder path
images_file = os.listdir(image_path)
images = [os.path.join(image_path, image) for image in images_file if
image.endswith(".jpg") or image.endswith(".png")]
if isinstance(image_path[0], str):
images = [self.load_image(image) for image in image_path]
elif isinstance(image_path[0], np.ndarray):
images = [Image.fromarray(image) for image in image_path]
elif isinstance(image_path[0], Image.Image):
images = image_path
else:
raise Exception("Invalid input")
return images
def preprocess_image(self, image, **kwargs):
if (isinstance(image, str) and os.path.isdir(image)) or (isinstance(image, list) and (isinstance(image[0], Image.Image) or isinstance(image[0], np.ndarray) or os.path.isfile(image[0]))):
input_data = self.load_image_path(image)
input_data = [self.image_preprocess(image, **kwargs) for image in input_data]
input_data = torch.stack(input_data)
elif os.path.isfile(image):
input_data = self.load_image(image)
input_data = self.image_preprocess(input_data, **kwargs)
input_data = input_data.unsqueeze(0)
elif isinstance(image, torch.Tensor):
raise Exception("Unsupported input")
return input_data
class Clip_Basic_Metric(Metric):
def __init__(self):
super().__init__()
self.tensor_preprocess = transforms.Compose([
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
# transforms.rescale
transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0]),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
self.image_preprocess = transforms.Compose([
transforms.Resize(size=224, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
class Clip_metric(Clip_Basic_Metric):
@torch.no_grad()
def __init__(self, target_style_prompt: str=None, clip_model_name="openai/clip-vit-large-patch14", device="cuda",
bath_size=8, alpha=0.5):
super().__init__()
self.device = device
self.alpha = alpha
self.model = (CLIPModel.from_pretrained(clip_model_name)).to(device)
self.processor = CLIPProcessor.from_pretrained(clip_model_name)
self.tokenizer = self.processor.tokenizer
self.image_processor = self.processor.image_processor
# self.style_class_features = self.get_text_features(self.styles).cpu()
self.style_class_features=[]
# self.noise_prompt_features = self.get_text_features("Noise")
self.model.eval()
self.batch_size = bath_size
if target_style_prompt is not None:
self.ref_style_features = self.get_text_features(target_style_prompt)
else:
self.ref_style_features = None
self.ref_image_style_prototype = None
def get_text_features(self, text):
prompt_encoding = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(self.device)
prompt_features = self.model.get_text_features(**prompt_encoding).to(self.device)
prompt_features = F.normalize(prompt_features, p=2, dim=-1)
return prompt_features
def get_image_features(self, images):
# if isinstance(image, torch.Tensor):
# self.tensor_transform(image)
# else:
# image_features = self.image_processor(image, return_tensors="pt", padding=True).to(self.device, non_blocking=True)
images = self.load_image_path(images)
if isinstance(images, torch.Tensor):
images = self.tensor_preprocess(images)
data = {"pixel_values": images}
image_features = BatchFeature(data=data, tensor_type="pt")
else:
image_features = self.image_processor(images, return_tensors="pt", padding=True).to(self.device,
non_blocking=True)
image_features = self.model.get_image_features(**image_features).to(self.device)
image_features = F.normalize(image_features, p=2, dim=-1)
return image_features
def img_text_similarity(self, image_features, text=None):
if text is not None:
prompt_feature = self.get_text_features(text)
if isinstance(text, str):
prompt_feature = prompt_feature.repeat(len(image_features), 1)
else:
prompt_feature = self.ref_style_features
similarity_each = torch.einsum("nc, nc -> n", image_features, prompt_feature)
return similarity_each
def forward(self, output_imgs, prompt=None):
image_features = self.get_image_features(output_imgs)
# print(image_features)
style_score = self.img_text_similarity(image_features.mean(dim=0, keepdim=True))
if prompt is not None:
content_score = self.img_text_similarity(image_features, prompt)
score = self.alpha * style_score + (1 - self.alpha) * content_score
return {"score": score, "style_score": style_score, "content_score": content_score}
else:
return {"style_score": style_score}
def content_score(self, output_imgs, prompt):
self.to(self.device)
image_features = self.get_image_features(output_imgs)
content_score_details = self.img_text_similarity(image_features, prompt)
self.to("cpu")
return {"CLIP_content_score": content_score_details.mean().cpu(), "CLIP_content_score_details": content_score_details.cpu()}
class CSD_CLIP(Clip_Basic_Metric):
"""backbone + projection head"""
def __init__(self, name='vit_large',content_proj_head='default', ckpt_path = "data/weights/CSD-checkpoint.pth", device="cuda",
alpha=0.5, **kwargs):
super(CSD_CLIP, self).__init__()
self.alpha = alpha
self.content_proj_head = content_proj_head
self.device = device
if name == 'vit_large':
clipmodel, _ = clip.load("ViT-L/14")
self.backbone = clipmodel.visual
self.embedding_dim = 1024
elif name == 'vit_base':
clipmodel, _ = clip.load("ViT-B/16")
self.backbone = clipmodel.visual
self.embedding_dim = 768
self.feat_dim = 512
else:
raise Exception('This model is not implemented')
convert_weights_float(self.backbone)
self.last_layer_style = copy.deepcopy(self.backbone.proj)
if content_proj_head == 'custom':
self.last_layer_content = ProjectionHead(self.embedding_dim,self.feat_dim)
self.last_layer_content.apply(init_weights)
else:
self.last_layer_content = copy.deepcopy(self.backbone.proj)
self.backbone.proj = None
self.backbone.requires_grad_(False)
self.last_layer_style.requires_grad_(False)
self.last_layer_content.requires_grad_(False)
self.backbone.eval()
if ckpt_path is not None:
self.load_ckpt(ckpt_path)
self.to("cpu")
def load_ckpt(self, ckpt_path):
checkpoint = torch.load(ckpt_path, map_location="cpu")
state_dict = convert_state_dict(checkpoint['model_state_dict'])
msg = self.load_state_dict(state_dict, strict=False)
print(f"=> loaded CSD_CLIP checkpoint with msg {msg}")
@property
def dtype(self):
return self.backbone.conv1.weight.dtype
def get_image_features(self, input_data, get_style=True,get_content=False,feature_alpha=None):
if isinstance(input_data, torch.Tensor):
input_data = self.tensor_preprocess(input_data)
elif (isinstance(input_data, str) and os.path.isdir(input_data)) or (isinstance(input_data, list) and (isinstance(input_data[0], Image.Image) or isinstance(input_data[0], np.ndarray) or os.path.isfile(input_data[0]))):
input_data = self.load_image_path(input_data)
input_data = [self.image_preprocess(image) for image in input_data]
input_data = torch.stack(input_data)
elif os.path.isfile(input_data):
input_data = self.load_image(input_data)
input_data = self.image_preprocess(input_data)
input_data = input_data.unsqueeze(0)
input_data = input_data.to(self.device)
style_output = None
feature = self.backbone(input_data)
if get_style:
style_output = feature @ self.last_layer_style
# style_output = style_output.mean(dim=0)
style_output = nn.functional.normalize(style_output, dim=-1, p=2)
content_output=None
if get_content:
if feature_alpha is not None:
reverse_feature = ReverseLayerF.apply(feature, feature_alpha)
else:
reverse_feature = feature
# if alpha is not None:
if self.content_proj_head == 'custom':
content_output = self.last_layer_content(reverse_feature)
else:
content_output = reverse_feature @ self.last_layer_content
content_output = nn.functional.normalize(content_output, dim=-1, p=2)
return feature, content_output, style_output
@torch.no_grad()
def define_ref_image_style_prototype(self, ref_image_path: str):
self.to(self.device)
_, _, self.ref_style_feature = self.get_image_features(ref_image_path)
self.to("cpu")
# self.ref_style_feature = self.ref_style_feature.mean(dim=0)
@torch.no_grad()
def forward(self, styled_data):
self.to(self.device)
# get_content_feature = original_data is not None
_, content_output, style_output = self.get_image_features(styled_data, get_content=False)
style_similarities = style_output @ self.ref_style_feature.T
mean_style_similarities = style_similarities.mean(dim=-1)
mean_style_similarity = mean_style_similarities.mean()
max_style_similarities_v, max_style_similarities_id = style_similarities.max(dim=-1)
max_style_similarity = max_style_similarities_v.mean()
self.to("cpu")
return {"CSD_similarity_mean": mean_style_similarity, "CSD_similarity_max": max_style_similarity, "CSD_similarity_mean_details": mean_style_similarities,
"CSD_similarity_max_v_details": max_style_similarities_v, "CSD_similarity_max_id_details": max_style_similarities_id}
def get_style_loss(self, styled_data):
_, _, style_output = self.get_image_features(styled_data, get_style=True, get_content=False)
style_similarity = (style_output @ self.ref_style_feature).mean()
loss = 1 - style_similarity
return loss.mean()
class LPIPS_metric(Metric):
def __init__(self, type="vgg", device="cuda"):
super(LPIPS_metric, self).__init__()
self.lpips = lpips.LPIPS(net=type)
self.device = device
self.image_preprocess = transforms.Compose([
transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
self.to("cpu")
@torch.no_grad()
def forward(self, img1, img2):
self.to(self.device)
differences = []
for i in range(0, len(img1), 50):
img1_batch = img1[i:i+50]
img2_batch = img2[i:i+50]
img1_batch = self.preprocess_image(img1_batch).to(self.device)
img2_batch = self.preprocess_image(img2_batch).to(self.device)
differences.append(self.lpips(img1_batch, img2_batch).squeeze())
differences = torch.cat(differences)
difference = differences.mean()
# similarity = 1 - difference
self.to("cpu")
return {"LPIPS_content_difference": difference, "LPIPS_content_difference_details": differences}
class Vit_metric(Metric):
def __init__(self, device="cuda"):
super(Vit_metric, self).__init__()
self.device = device
self.model = ViTModel.from_pretrained('facebook/dino-vitb8').eval()
self.image_processor = ViTImageProcessor.from_pretrained('facebook/dino-vitb8')
self.to("cpu")
def get_image_features(self, images):
# if isinstance(image, torch.Tensor):
# self.tensor_transform(image)
# else:
# image_features = self.image_processor(image, return_tensors="pt", padding=True).to(self.device, non_blocking=True)
images = self.load_image_path(images)
batch_size = 20
all_image_features = []
for i in range(0, len(images), batch_size):
image_batch = images[i:i+batch_size]
if isinstance(image_batch, torch.Tensor):
image_batch = self.tensor_preprocess(image_batch)
data = {"pixel_values": image_batch}
image_processed = BatchFeature(data=data, tensor_type="pt")
else:
image_processed = self.image_processor(image_batch, return_tensors="pt").to(self.device)
image_features = self.model(**image_processed).last_hidden_state.flatten(start_dim=1)
image_features = F.normalize(image_features, p=2, dim=-1)
all_image_features.append(image_features)
all_image_features = torch.cat(all_image_features)
return all_image_features
@torch.no_grad()
def content_metric(self, img1, img2):
self.to(self.device)
if not(isinstance(img1, torch.Tensor) and len(img1.shape) == 2):
img1 = self.get_image_features(img1)
if not(isinstance(img2, torch.Tensor) and len(img2.shape) == 2):
img2 = self.get_image_features(img2)
similarities = torch.einsum("nc, nc -> n", img1, img2)
similarity = similarities.mean()
# self.to("cpu")
return {"Vit_content_similarity": similarity, "Vit_content_similarity_details": similarities}
# style
@torch.no_grad()
def define_ref_image_style_prototype(self, ref_image_path: str):
self.to(self.device)
self.ref_style_feature = self.get_image_features(ref_image_path)
self.to("cpu")
@torch.no_grad()
def style_metric(self, styled_data):
self.to(self.device)
if isinstance(styled_data, torch.Tensor) and len(styled_data.shape) == 2:
style_output = styled_data
else:
style_output = self.get_image_features(styled_data)
style_similarities = style_output @ self.ref_style_feature.T
mean_style_similarities = style_similarities.mean(dim=-1)
mean_style_similarity = mean_style_similarities.mean()
max_style_similarities_v, max_style_similarities_id = style_similarities.max(dim=-1)
max_style_similarity = max_style_similarities_v.mean()
# self.to("cpu")
return {"Vit_style_similarity_mean": mean_style_similarity, "Vit_style_similarity_max": max_style_similarity, "Vit_style_similarity_mean_details": mean_style_similarities,
"Vit_style_similarity_max_v_details": max_style_similarities_v, "Vit_style_similarity_max_id_details": max_style_similarities_id}
@torch.no_grad()
def forward(self, styled_data, original_data=None):
self.to(self.device)
styled_features = self.get_image_features(styled_data)
ret ={}
if original_data is not None:
content_metric = self.content_metric(styled_features, original_data)
ret["Vit_content"] = content_metric
style_metric = self.style_metric(styled_features)
ret["Vit_style"] = style_metric
self.to("cpu")
return ret
class StyleContentMetric(nn.Module):
def __init__(self, style_ref_image_folder, device="cuda"):
super(StyleContentMetric, self).__init__()
self.device = device
self.clip_style_metric = CSD_CLIP(device=device)
self.ref_image_file = os.listdir(style_ref_image_folder)
self.ref_image_file = [i for i in self.ref_image_file if i.endswith(".jpg") or i.endswith(".png")]
self.ref_image_file.sort()
self.ref_image_file = np.array(self.ref_image_file)
ref_image_file_path = [os.path.join(style_ref_image_folder, i) for i in self.ref_image_file]
self.clip_style_metric.define_ref_image_style_prototype(ref_image_file_path)
self.vit_metric = Vit_metric(device=device)
self.vit_metric.define_ref_image_style_prototype(ref_image_file_path)
self.lpips_metric = LPIPS_metric(device=device)
self.clip_content_metric = Clip_metric(alpha=0, target_style_prompt=None)
self.to("cpu")
def forward(self, styled_data, original_data=None, content_caption=None):
ret ={}
csd_score = self.clip_style_metric(styled_data)
csd_score["max_query"] = self.ref_image_file[csd_score["CSD_similarity_max_id_details"].cpu()].tolist()
torch.cuda.empty_cache()
ret["Style_CSD"] = csd_score
vit_score = self.vit_metric(styled_data, original_data)
torch.cuda.empty_cache()
vit_style = vit_score["Vit_style"]
vit_style["max_query"] = self.ref_image_file[vit_style["Vit_style_similarity_max_id_details"].cpu()].tolist()
ret["Style_VIT"] = vit_style
if original_data is not None:
vit_content = vit_score["Vit_content"]
ret["Content_VIT"] = vit_content
lpips_score = self.lpips_metric(styled_data, original_data)
torch.cuda.empty_cache()
ret["Content_LPIPS"] = lpips_score
if content_caption is not None:
clip_content = self.clip_content_metric.content_score(styled_data, content_caption)
ret["Content_CLIP"] = clip_content
torch.cuda.empty_cache()
for type_key, type_value in ret.items():
for key, value in type_value.items():
if isinstance(value, torch.Tensor):
if value.numel() == 1:
ret[type_key][key] = round(value.item(), 4)
else:
ret[type_key][key] = value.tolist()
ret[type_key][key] = [round(v, 4) for v in ret[type_key][key]]
self.to("cpu")
ret["ref_image_file"] = self.ref_image_file.tolist()
return ret
if __name__ == "__main__":
with torch.no_grad():
metric = StyleContentMetric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/clip_dissection/Art_styles/camille-pissarro/impressionism/split_5/paintings")
score = metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/converted_photo/500",
"/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/paintings")
print(score)
lpips = LPIPS_metric()
score = lpips("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/paintings",
"/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/converted_photo/500")
print("lpips", score)
clip_metric = CSD_CLIP()
clip_metric.define_ref_image_style_prototype(
"/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset1/paintings")
score = clip_metric(
"/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/converted_photo/500")
print("subset3-subset3_sd14_converted", score)
score = clip_metric(
"/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_500")
print("subset3-photo", score)
score = clip_metric(
"/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset1/paintings")
print("subset3-subset1", score)
score = clip_metric(
"/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/andy-warhol/pop_art/subset1/paintings")
print("subset3-andy", score)
# score = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/paintings", "A painting")
# print("subset3",score)
# score_subset2 = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset2/paintings")
# print("subset2",score_subset2)
# score_subset3 = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/paintings")
# print("subset3",score_subset3)
#
# score_subset3_converted = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/converted_photo/500")
# print("subset3-subset3_sd14_converted" , score_subset3_converted)
#
# score_subset3_coco_converted = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/coco_converted_photo/500")
# print("subset3-subset3_coco_converted" , score_subset3_coco_converted)
#
# clip_metric = Clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/sketch_500")
# score = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_500")
# print("photo500_1-sketch" ,score)
#
# clip_metric = Clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_500")
# score = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_500_new")
# print("photo500_1-photo500_2" ,score)
# from custom_datasets.imagepair import ImageSet
# import matplotlib.pyplot as plt
# dataset = ImageSet(folder = "/data/vision/torralba/scratch/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/paintings",
# caption_path="/data/vision/torralba/scratch/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/captions",
# keep_in_mem=False)
# for sample in dataset:
# score = clip_metric.content_score(sample["image"], sample["caption"][0])
# plt.imshow(sample["image"])
# plt.title(f"score: {round(score.item(),2)}\n prompt: {sample['caption'][0]}")
# plt.show()
|