File size: 27,239 Bytes
262b155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# Authors: Hui Ren (rhfeiyang.github.io)

import os

import numpy as np
from torchvision import transforms
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.autograd import Function
from PIL import Image
from transformers import CLIPProcessor, CLIPModel
from collections import OrderedDict
from transformers import BatchFeature
import clip
import copy
import lpips
from transformers import ViTImageProcessor, ViTModel

## CSD_CLIP
def convert_weights_float(model: nn.Module):
    """Convert applicable model parameters to fp32"""

    def _convert_weights_to_fp32(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
            l.weight.data = l.weight.data.float()
            if l.bias is not None:
                l.bias.data = l.bias.data.float()

        if isinstance(l, nn.MultiheadAttention):
            for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
                tensor = getattr(l, attr)
                if tensor is not None:
                    tensor.data = tensor.data.float()

        for name in ["text_projection", "proj"]:
            if hasattr(l, name):
                attr = getattr(l, name)
                if attr is not None:
                    attr.data = attr.data.float()

    model.apply(_convert_weights_to_fp32)

class ReverseLayerF(Function):

    @staticmethod
    def forward(ctx, x, alpha):
        ctx.alpha = alpha

        return x.view_as(x)

    @staticmethod
    def backward(ctx, grad_output):
        output = grad_output.neg() * ctx.alpha

        return output, None


## taken from https://github.com/moein-shariatnia/OpenAI-CLIP/blob/master/modules.py
class ProjectionHead(nn.Module):
    def __init__(

            self,

            embedding_dim,

            projection_dim,

            dropout=0

    ):
        super().__init__()
        self.projection = nn.Linear(embedding_dim, projection_dim)
        self.gelu = nn.GELU()
        self.fc = nn.Linear(projection_dim, projection_dim)
        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(projection_dim)

    def forward(self, x):
        projected = self.projection(x)
        x = self.gelu(projected)
        x = self.fc(x)
        x = self.dropout(x)
        x = x + projected
        x = self.layer_norm(x)
        return x

def convert_state_dict(state_dict):
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        if k.startswith("module."):
            k = k.replace("module.", "")
        new_state_dict[k] = v
    return new_state_dict
def init_weights(m):
    if isinstance(m, nn.Linear):
        torch.nn.init.xavier_uniform_(m.weight)
        if m.bias is not None:
            nn.init.normal_(m.bias, std=1e-6)

class Metric(nn.Module):
    def __init__(self):
        super().__init__()
        self.image_preprocess = None

    def load_image(self, image_path):
        with open(image_path, 'rb') as f:
            image = Image.open(f).convert("RGB")
        return image

    def load_image_path(self, image_path):
        if isinstance(image_path, str):
            # should be a image folder path
            images_file = os.listdir(image_path)
            images = [os.path.join(image_path, image) for image in images_file if
                      image.endswith(".jpg") or image.endswith(".png")]
        if isinstance(image_path[0], str):
            images = [self.load_image(image) for image in image_path]
        elif isinstance(image_path[0], np.ndarray):
            images = [Image.fromarray(image) for image in image_path]
        elif isinstance(image_path[0], Image.Image):
            images = image_path
        else:
            raise Exception("Invalid input")
        return images

    def preprocess_image(self, image, **kwargs):
        if (isinstance(image, str) and os.path.isdir(image)) or (isinstance(image, list) and (isinstance(image[0], Image.Image) or isinstance(image[0], np.ndarray) or os.path.isfile(image[0]))):
            input_data = self.load_image_path(image)
            input_data = [self.image_preprocess(image, **kwargs) for image in input_data]
            input_data = torch.stack(input_data)
        elif os.path.isfile(image):
            input_data = self.load_image(image)
            input_data = self.image_preprocess(input_data, **kwargs)
            input_data = input_data.unsqueeze(0)
        elif isinstance(image, torch.Tensor):
            raise Exception("Unsupported input")
        return input_data

class Clip_Basic_Metric(Metric):
    def __init__(self):
        super().__init__()
        self.tensor_preprocess = transforms.Compose([
            transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
            # transforms.rescale
            transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0]),
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
        ])
        self.image_preprocess = transforms.Compose([
            transforms.Resize(size=224, interpolation=transforms.InterpolationMode.BICUBIC),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
        ])

class Clip_metric(Clip_Basic_Metric):

    @torch.no_grad()
    def __init__(self, target_style_prompt: str=None, clip_model_name="openai/clip-vit-large-patch14", device="cuda",

                 bath_size=8, alpha=0.5):
        super().__init__()
        self.device = device
        self.alpha = alpha
        self.model = (CLIPModel.from_pretrained(clip_model_name)).to(device)
        self.processor = CLIPProcessor.from_pretrained(clip_model_name)
        self.tokenizer = self.processor.tokenizer
        self.image_processor = self.processor.image_processor
        # self.style_class_features = self.get_text_features(self.styles).cpu()
        self.style_class_features=[]
        # self.noise_prompt_features = self.get_text_features("Noise")
        self.model.eval()
        self.batch_size = bath_size
        if target_style_prompt is not None:
            self.ref_style_features = self.get_text_features(target_style_prompt)
        else:
            self.ref_style_features = None

        self.ref_image_style_prototype = None

    def get_text_features(self, text):
        prompt_encoding = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True).to(self.device)
        prompt_features = self.model.get_text_features(**prompt_encoding).to(self.device)
        prompt_features = F.normalize(prompt_features, p=2, dim=-1)
        return prompt_features

    def get_image_features(self, images):
        # if isinstance(image, torch.Tensor):
        #     self.tensor_transform(image)
        # else:
        #     image_features = self.image_processor(image, return_tensors="pt", padding=True).to(self.device, non_blocking=True)
        images = self.load_image_path(images)
        if isinstance(images, torch.Tensor):
            images = self.tensor_preprocess(images)
            data = {"pixel_values": images}
            image_features = BatchFeature(data=data, tensor_type="pt")
        else:
            image_features = self.image_processor(images, return_tensors="pt", padding=True).to(self.device,
                                                                                                non_blocking=True)

        image_features = self.model.get_image_features(**image_features).to(self.device)
        image_features = F.normalize(image_features, p=2, dim=-1)
        return image_features

    def img_text_similarity(self, image_features, text=None):
        if text is not None:
            prompt_feature = self.get_text_features(text)
            if isinstance(text, str):
                prompt_feature = prompt_feature.repeat(len(image_features), 1)
        else:
            prompt_feature = self.ref_style_features

        similarity_each = torch.einsum("nc, nc -> n", image_features, prompt_feature)
        return similarity_each

    def forward(self, output_imgs, prompt=None):
        image_features = self.get_image_features(output_imgs)
        # print(image_features)
        style_score = self.img_text_similarity(image_features.mean(dim=0, keepdim=True))
        if prompt is not None:
            content_score = self.img_text_similarity(image_features, prompt)

            score = self.alpha * style_score + (1 - self.alpha) * content_score
            return {"score": score, "style_score": style_score, "content_score": content_score}
        else:
            return {"style_score": style_score}

    def content_score(self, output_imgs, prompt):
        self.to(self.device)
        image_features = self.get_image_features(output_imgs)
        content_score_details = self.img_text_similarity(image_features, prompt)
        self.to("cpu")
        return {"CLIP_content_score": content_score_details.mean().cpu(), "CLIP_content_score_details": content_score_details.cpu()}


class CSD_CLIP(Clip_Basic_Metric):
    """backbone + projection head"""
    def __init__(self, name='vit_large',content_proj_head='default', ckpt_path = "data/weights/CSD-checkpoint.pth", device="cuda",

                 alpha=0.5, **kwargs):
        super(CSD_CLIP, self).__init__()
        self.alpha = alpha
        self.content_proj_head = content_proj_head
        self.device = device
        if name == 'vit_large':
            clipmodel, _ = clip.load("ViT-L/14")
            self.backbone = clipmodel.visual
            self.embedding_dim = 1024
        elif name == 'vit_base':
            clipmodel, _ = clip.load("ViT-B/16")
            self.backbone = clipmodel.visual
            self.embedding_dim = 768
            self.feat_dim = 512
        else:
            raise Exception('This model is not implemented')

        convert_weights_float(self.backbone)
        self.last_layer_style = copy.deepcopy(self.backbone.proj)
        if content_proj_head == 'custom':
            self.last_layer_content = ProjectionHead(self.embedding_dim,self.feat_dim)
            self.last_layer_content.apply(init_weights)

        else:
            self.last_layer_content = copy.deepcopy(self.backbone.proj)

        self.backbone.proj = None
        self.backbone.requires_grad_(False)
        self.last_layer_style.requires_grad_(False)
        self.last_layer_content.requires_grad_(False)
        self.backbone.eval()

        if ckpt_path is not None:
            self.load_ckpt(ckpt_path)
        self.to("cpu")

    def load_ckpt(self, ckpt_path):
        checkpoint = torch.load(ckpt_path, map_location="cpu")
        state_dict = convert_state_dict(checkpoint['model_state_dict'])
        msg = self.load_state_dict(state_dict, strict=False)
        print(f"=> loaded CSD_CLIP checkpoint with msg {msg}")

    @property
    def dtype(self):
        return self.backbone.conv1.weight.dtype

    def get_image_features(self, input_data, get_style=True,get_content=False,feature_alpha=None):
        if isinstance(input_data, torch.Tensor):
            input_data = self.tensor_preprocess(input_data)
        elif (isinstance(input_data, str) and os.path.isdir(input_data)) or (isinstance(input_data, list) and (isinstance(input_data[0], Image.Image) or isinstance(input_data[0], np.ndarray) or os.path.isfile(input_data[0]))):
            input_data = self.load_image_path(input_data)
            input_data = [self.image_preprocess(image) for image in input_data]
            input_data = torch.stack(input_data)
        elif os.path.isfile(input_data):
            input_data = self.load_image(input_data)
            input_data = self.image_preprocess(input_data)
            input_data = input_data.unsqueeze(0)
        input_data = input_data.to(self.device)
        style_output = None

        feature = self.backbone(input_data)
        if get_style:
            style_output = feature @ self.last_layer_style
            # style_output = style_output.mean(dim=0)
            style_output = nn.functional.normalize(style_output, dim=-1, p=2)

        content_output=None
        if get_content:
            if feature_alpha is not None:
                reverse_feature = ReverseLayerF.apply(feature, feature_alpha)
            else:
                reverse_feature = feature
            # if alpha is not None:
            if self.content_proj_head == 'custom':
                content_output =  self.last_layer_content(reverse_feature)
            else:
                content_output = reverse_feature @ self.last_layer_content
            content_output = nn.functional.normalize(content_output, dim=-1, p=2)

        return feature, content_output, style_output


    @torch.no_grad()
    def define_ref_image_style_prototype(self, ref_image_path: str):
        self.to(self.device)
        _, _, self.ref_style_feature = self.get_image_features(ref_image_path)
        self.to("cpu")
        # self.ref_style_feature = self.ref_style_feature.mean(dim=0)
    @torch.no_grad()
    def forward(self, styled_data):
        self.to(self.device)
        # get_content_feature = original_data is not None
        _, content_output, style_output = self.get_image_features(styled_data, get_content=False)
        style_similarities = style_output @ self.ref_style_feature.T
        mean_style_similarities = style_similarities.mean(dim=-1)
        mean_style_similarity = mean_style_similarities.mean()

        max_style_similarities_v, max_style_similarities_id = style_similarities.max(dim=-1)
        max_style_similarity = max_style_similarities_v.mean()


        self.to("cpu")
        return {"CSD_similarity_mean": mean_style_similarity, "CSD_similarity_max": max_style_similarity, "CSD_similarity_mean_details": mean_style_similarities,
                "CSD_similarity_max_v_details": max_style_similarities_v, "CSD_similarity_max_id_details": max_style_similarities_id}

    def get_style_loss(self, styled_data):
        _, _, style_output = self.get_image_features(styled_data, get_style=True, get_content=False)
        style_similarity = (style_output @ self.ref_style_feature).mean()
        loss = 1 - style_similarity
        return loss.mean()

class LPIPS_metric(Metric):
    def __init__(self, type="vgg", device="cuda"):
        super(LPIPS_metric, self).__init__()
        self.lpips = lpips.LPIPS(net=type)
        self.device = device
        self.image_preprocess = transforms.Compose([
            transforms.Resize(256, interpolation=transforms.InterpolationMode.BICUBIC),
            transforms.CenterCrop(256),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        self.to("cpu")

    @torch.no_grad()
    def forward(self, img1, img2):
        self.to(self.device)
        differences = []
        for i in range(0, len(img1), 50):
            img1_batch = img1[i:i+50]
            img2_batch = img2[i:i+50]
            img1_batch = self.preprocess_image(img1_batch).to(self.device)
            img2_batch = self.preprocess_image(img2_batch).to(self.device)
            differences.append(self.lpips(img1_batch, img2_batch).squeeze())
        differences = torch.cat(differences)
        difference = differences.mean()
        # similarity = 1 - difference
        self.to("cpu")
        return {"LPIPS_content_difference": difference,  "LPIPS_content_difference_details": differences}

class Vit_metric(Metric):
    def __init__(self, device="cuda"):
        super(Vit_metric, self).__init__()
        self.device = device
        self.model = ViTModel.from_pretrained('facebook/dino-vitb8').eval()
        self.image_processor = ViTImageProcessor.from_pretrained('facebook/dino-vitb8')
        self.to("cpu")
    def get_image_features(self, images):
        # if isinstance(image, torch.Tensor):
        #     self.tensor_transform(image)
        # else:
        #     image_features = self.image_processor(image, return_tensors="pt", padding=True).to(self.device, non_blocking=True)
        images = self.load_image_path(images)
        batch_size = 20
        all_image_features = []
        for i in range(0, len(images), batch_size):
            image_batch = images[i:i+batch_size]
            if isinstance(image_batch, torch.Tensor):
                image_batch = self.tensor_preprocess(image_batch)
                data = {"pixel_values": image_batch}
                image_processed = BatchFeature(data=data, tensor_type="pt")
            else:
                image_processed = self.image_processor(image_batch, return_tensors="pt").to(self.device)
            image_features = self.model(**image_processed).last_hidden_state.flatten(start_dim=1)
            image_features = F.normalize(image_features, p=2, dim=-1)
            all_image_features.append(image_features)
        all_image_features = torch.cat(all_image_features)
        return all_image_features

    @torch.no_grad()
    def content_metric(self, img1, img2):
        self.to(self.device)
        if not(isinstance(img1, torch.Tensor) and len(img1.shape) == 2):
            img1 = self.get_image_features(img1)
        if not(isinstance(img2, torch.Tensor) and len(img2.shape) == 2):
            img2 = self.get_image_features(img2)
        similarities = torch.einsum("nc, nc -> n", img1, img2)
        similarity = similarities.mean()
        # self.to("cpu")
        return {"Vit_content_similarity": similarity, "Vit_content_similarity_details": similarities}

    # style
    @torch.no_grad()
    def define_ref_image_style_prototype(self, ref_image_path: str):
        self.to(self.device)
        self.ref_style_feature = self.get_image_features(ref_image_path)
        self.to("cpu")
    @torch.no_grad()
    def style_metric(self, styled_data):
        self.to(self.device)
        if isinstance(styled_data, torch.Tensor) and len(styled_data.shape) == 2:
            style_output = styled_data
        else:
            style_output = self.get_image_features(styled_data)
        style_similarities = style_output @ self.ref_style_feature.T
        mean_style_similarities = style_similarities.mean(dim=-1)
        mean_style_similarity = mean_style_similarities.mean()

        max_style_similarities_v, max_style_similarities_id = style_similarities.max(dim=-1)
        max_style_similarity = max_style_similarities_v.mean()

        # self.to("cpu")
        return {"Vit_style_similarity_mean": mean_style_similarity, "Vit_style_similarity_max": max_style_similarity, "Vit_style_similarity_mean_details": mean_style_similarities,
                "Vit_style_similarity_max_v_details": max_style_similarities_v, "Vit_style_similarity_max_id_details": max_style_similarities_id}
    @torch.no_grad()
    def forward(self, styled_data, original_data=None):
        self.to(self.device)
        styled_features = self.get_image_features(styled_data)
        ret ={}
        if original_data is not None:
            content_metric = self.content_metric(styled_features, original_data)
            ret["Vit_content"] = content_metric
        style_metric = self.style_metric(styled_features)
        ret["Vit_style"] = style_metric
        self.to("cpu")
        return ret



class StyleContentMetric(nn.Module):
    def __init__(self, style_ref_image_folder, device="cuda"):
        super(StyleContentMetric, self).__init__()
        self.device = device
        self.clip_style_metric = CSD_CLIP(device=device)
        self.ref_image_file = os.listdir(style_ref_image_folder)
        self.ref_image_file = [i for i in self.ref_image_file if i.endswith(".jpg") or i.endswith(".png")]
        self.ref_image_file.sort()
        self.ref_image_file = np.array(self.ref_image_file)
        ref_image_file_path = [os.path.join(style_ref_image_folder, i) for i in self.ref_image_file]

        self.clip_style_metric.define_ref_image_style_prototype(ref_image_file_path)
        self.vit_metric = Vit_metric(device=device)
        self.vit_metric.define_ref_image_style_prototype(ref_image_file_path)
        self.lpips_metric = LPIPS_metric(device=device)

        self.clip_content_metric = Clip_metric(alpha=0, target_style_prompt=None)

        self.to("cpu")

    def forward(self, styled_data, original_data=None, content_caption=None):
        ret ={}
        csd_score = self.clip_style_metric(styled_data)
        csd_score["max_query"] = self.ref_image_file[csd_score["CSD_similarity_max_id_details"].cpu()].tolist()
        torch.cuda.empty_cache()
        ret["Style_CSD"] = csd_score
        vit_score = self.vit_metric(styled_data, original_data)
        torch.cuda.empty_cache()
        vit_style = vit_score["Vit_style"]
        vit_style["max_query"] = self.ref_image_file[vit_style["Vit_style_similarity_max_id_details"].cpu()].tolist()
        ret["Style_VIT"] = vit_style

        if original_data is not None:
            vit_content = vit_score["Vit_content"]
            ret["Content_VIT"] = vit_content
            lpips_score = self.lpips_metric(styled_data, original_data)
            torch.cuda.empty_cache()
            ret["Content_LPIPS"] = lpips_score

        if content_caption is not None:
            clip_content = self.clip_content_metric.content_score(styled_data, content_caption)
            ret["Content_CLIP"] = clip_content
            torch.cuda.empty_cache()

        for type_key, type_value in ret.items():
            for key, value in type_value.items():
                if isinstance(value, torch.Tensor):
                    if value.numel() == 1:
                        ret[type_key][key] = round(value.item(), 4)
                    else:
                        ret[type_key][key] = value.tolist()
                        ret[type_key][key] = [round(v, 4) for v in ret[type_key][key]]

        self.to("cpu")
        ret["ref_image_file"] = self.ref_image_file.tolist()
        return ret


if __name__ == "__main__":
    with torch.no_grad():
        metric = StyleContentMetric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/clip_dissection/Art_styles/camille-pissarro/impressionism/split_5/paintings")
        score = metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/converted_photo/500",
                       "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/paintings")
        print(score)



        lpips = LPIPS_metric()
        score = lpips("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/paintings",
                      "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/converted_photo/500")

        print("lpips", score)


        clip_metric = CSD_CLIP()
        clip_metric.define_ref_image_style_prototype(
            "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset1/paintings")

        score = clip_metric(
            "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/converted_photo/500")
        print("subset3-subset3_sd14_converted", score)

        score = clip_metric(
            "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_500")
        print("subset3-photo", score)



        score = clip_metric(
            "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset1/paintings")
        print("subset3-subset1", score)

        score = clip_metric(
            "/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/andy-warhol/pop_art/subset1/paintings")
        print("subset3-andy", score)
        # score = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/paintings", "A painting")

        # print("subset3",score)
        # score_subset2 = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset2/paintings")
        # print("subset2",score_subset2)
        # score_subset3 = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/paintings")
        # print("subset3",score_subset3)
        #
        # score_subset3_converted = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/converted_photo/500")
        # print("subset3-subset3_sd14_converted" , score_subset3_converted)
        #
        # score_subset3_coco_converted = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/coco_converted_photo/500")
        # print("subset3-subset3_coco_converted" , score_subset3_coco_converted)
        #
        # clip_metric = Clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/sketch_500")
        # score = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_500")
        # print("photo500_1-sketch" ,score)
        #
        # clip_metric = Clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_500")
        # score = clip_metric("/afs/csail.mit.edu/u/h/huiren/code/diffusion/stable_diffusion/imgFolder/clip_filtered_remain_500_new")
        # print("photo500_1-photo500_2" ,score)
        # from custom_datasets.imagepair import ImageSet
        # import matplotlib.pyplot as plt
        # dataset = ImageSet(folder = "/data/vision/torralba/scratch/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/paintings",
        #                    caption_path="/data/vision/torralba/scratch/huiren/code/diffusion/stable_diffusion/custom_datasets/wikiart/data/gustav-klimt_Art_Nouveau/subset3/captions",
        #                     keep_in_mem=False)
        # for sample in dataset:
        #     score = clip_metric.content_score(sample["image"], sample["caption"][0])
        #     plt.imshow(sample["image"])
        #     plt.title(f"score: {round(score.item(),2)}\n prompt: {sample['caption'][0]}")
        #     plt.show()