File size: 5,276 Bytes
915f69b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch.nn as nn
from .modulate import ModLN
class BasicBlock(nn.Module):
"""
Transformer block that is in its simplest form.
Designed for PF-LRM architecture.
"""
# Block contains a self-attention layer and an MLP
def __init__(self, inner_dim: int, num_heads: int, eps: float,
attn_drop: float = 0., attn_bias: bool = False,
mlp_ratio: float = 4., mlp_drop: float = 0.):
super().__init__()
self.norm1 = nn.LayerNorm(inner_dim, eps=eps)
self.self_attn = nn.MultiheadAttention(
embed_dim=inner_dim, num_heads=num_heads,
dropout=attn_drop, bias=attn_bias, batch_first=True)
self.norm2 = nn.LayerNorm(inner_dim, eps=eps)
self.mlp = nn.Sequential(
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
nn.GELU(),
nn.Dropout(mlp_drop),
nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
nn.Dropout(mlp_drop),
)
def forward(self, x):
# x: [N, L, D]
before_sa = self.norm1(x)
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
x = x + self.mlp(self.norm2(x))
return x
class ConditionBlock(nn.Module):
"""
Transformer block that takes in a cross-attention condition.
Designed for SparseLRM architecture.
"""
# Block contains a cross-attention layer, a self-attention layer, and an MLP
def __init__(self, inner_dim: int, cond_dim: int, num_heads: int, eps: float,
attn_drop: float = 0., attn_bias: bool = False,
mlp_ratio: float = 4., mlp_drop: float = 0.):
super().__init__()
self.norm1 = nn.LayerNorm(inner_dim, eps=eps)
self.cross_attn = nn.MultiheadAttention(
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim,
dropout=attn_drop, bias=attn_bias, batch_first=True)
self.norm2 = nn.LayerNorm(inner_dim, eps=eps)
self.self_attn = nn.MultiheadAttention(
embed_dim=inner_dim, num_heads=num_heads,
dropout=attn_drop, bias=attn_bias, batch_first=True)
self.norm3 = nn.LayerNorm(inner_dim, eps=eps)
self.mlp = nn.Sequential(
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
nn.GELU(),
nn.Dropout(mlp_drop),
nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
nn.Dropout(mlp_drop),
)
def forward(self, x, cond):
# x: [N, L, D]
# cond: [N, L_cond, D_cond]
x = x + self.cross_attn(self.norm1(x), cond, cond, need_weights=False)[0]
before_sa = self.norm2(x)
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
x = x + self.mlp(self.norm3(x))
return x
class ConditionModulationBlock(nn.Module):
"""
Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks.
Designed for raw LRM architecture.
"""
# Block contains a cross-attention layer, a self-attention layer, and an MLP
def __init__(self, inner_dim: int, cond_dim: int, mod_dim: int, num_heads: int, eps: float,
attn_drop: float = 0., attn_bias: bool = False,
mlp_ratio: float = 4., mlp_drop: float = 0.):
super().__init__()
self.norm1 = ModLN(inner_dim, mod_dim, eps)
self.cross_attn = nn.MultiheadAttention(
embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim,
dropout=attn_drop, bias=attn_bias, batch_first=True)
self.norm2 = ModLN(inner_dim, mod_dim, eps)
self.self_attn = nn.MultiheadAttention(
embed_dim=inner_dim, num_heads=num_heads,
dropout=attn_drop, bias=attn_bias, batch_first=True)
self.norm3 = ModLN(inner_dim, mod_dim, eps)
self.mlp = nn.Sequential(
nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
nn.GELU(),
nn.Dropout(mlp_drop),
nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
nn.Dropout(mlp_drop),
)
def forward(self, x, cond, mod):
# x: [N, L, D]
# cond: [N, L_cond, D_cond]
# mod: [N, D_mod]
x = x + self.cross_attn(self.norm1(x, mod), cond, cond, need_weights=False)[0]
before_sa = self.norm2(x, mod)
x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
x = x + self.mlp(self.norm3(x, mod))
return x
|