Spaces:
Sleeping
Sleeping
File size: 5,880 Bytes
71f183c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import cvxpy as cp
from cvxpylayers.torch import CvxpyLayer
from torch.nn import functional as F
import torch
from modelguidedattacks import cls_models
import time
torch.manual_seed(0)
device = "cuda"
# model = cls_models.get_model("imagenet", "resnet18", device)
rand_feats = torch.randn(1, 512, device=device)
attack_targets = [4, 7, 5, 9, 2]
# # pred_logits = model.head(rand_feats)
# # head_W, head_bias = model.head_matrices()
(head_W, head_bias, pred_logits) = torch.load("debugsaveimagenet.save")
rand_feats, rand_logits, attack_targets = torch.load("attack_case.p", map_location=device)
reconstructed_logits = rand_feats@head_W.T + head_bias
num_feats = head_W.shape[1]
num_classes = head_W.shape[0]
x = cp.Variable(num_feats)
anchor_feats = cp.Parameter(x.shape)
A = cp.Parameter(head_W.shape)
b = cp.Parameter(head_bias.shape)
logits = A@x + b
MARGIN = 0.1
# constraints = []
# for i in range(len(attack_targets) - 1):
# constraints.append( logits[attack_targets[i]] - logits[attack_targets[i+1]] >= MARGIN)
# for i in range(num_classes):
# if i in attack_targets:
# continue
# constraints.append(logits[attack_targets[-1]] - logits[i] >= MARGIN )
# objective = cp.Minimize(0.5 * cp.pnorm(x - anchor_feats, p=2))
# problem = cp.Problem(objective, constraints)
# anchor_feats.value = rand_feats[0].cpu().numpy()
# A.value = head_W.detach().cpu().numpy()
# b.value = head_bias.detach().cpu().numpy()
# start_time = time.time()
# problem.solve()
# print ("Non vectorized sol", time.time() - start_time)
# logits_sol_torch = torch.from_numpy(logits.value)
# logits_check = logits_sol_torch.argsort(descending=True)
# feats_sol = torch.from_numpy(x.value[:, None]).float().to(rand_feats)
# sol_feat_norm = (feats_sol[:, 0].cpu() - rand_feats[0].cpu()).norm(dim=-1)
# sol_logits = head_W@feats_sol + head_bias[:, None]
# sol_sort = sol_logits.argsort(dim=0, descending=True)
# Constraint matrix
num_constraints = num_classes - 1
D = torch.zeros((num_classes), num_constraints)
non_attack_targets = list(set(range(num_classes)) - set(attack_targets))
for constraint_cursor in range(num_constraints):
if constraint_cursor < len(attack_targets) - 1:
D[attack_targets[constraint_cursor], constraint_cursor] = 1
D[attack_targets[constraint_cursor + 1], constraint_cursor] = -1
else:
non_attack_i = constraint_cursor - len(attack_targets) + 1
D[attack_targets[-1], constraint_cursor] = 1
D[non_attack_targets[non_attack_i], constraint_cursor] = -1
D = D.T
# vectorized_differences = D @ logits
# vectorized_constraint = vectorized_differences >= torch.full(vectorized_differences.shape, fill_value=MARGIN).numpy()
# Q = 2*torch.eye(x.shape[0]).numpy()
# P = -2*anchor_feats
# G = D@A
# H = MARGIN - D @ b
# G = -G
# H = -H
# vectorized_constraint = G@x <= H
# objective = cp.Minimize((1/2)*cp.quad_form(x, Q) + P.T@x)
# problem = cp.Problem(objective, [vectorized_constraint])
# anchor_feats.value = rand_feats[0].cpu().numpy()
# A.value = head_W.detach().cpu().numpy()
# b.value = head_bias.detach().cpu().numpy()
# start_time = time.time()
# problem.solve()
# print ("vectorized sol", time.time() - start_time)
# logits_sol_torch = torch.from_numpy(logits.value)
# logits_check = logits_sol_torch.argsort(descending=True)
# feats_sol = torch.from_numpy(x.value[:, None]).float().to(rand_feats)
# sol_feat_norm = (feats_sol[:, 0].cpu() - rand_feats[0].cpu()).norm(dim=-1)
# sol_logits = head_W@feats_sol + head_bias[:, None]
# sol_sort = sol_logits.argsort(dim=0, descending=True)
import qpth
B = 2
nz = num_feats
nineq = num_constraints
device = "cuda"
attack_targets = attack_targets.expand(B, -1)
K = attack_targets.shape[-1]
# Start with all classes should be less than smallest attack target
D = -torch.eye(num_classes, device=device)[None].repeat(B, 1, 1)
attack_targets_write = attack_targets[:, -1][:, None, None].expand(-1, D.shape[1], -1)
D.scatter_(dim=2, index=attack_targets_write, src=torch.ones(attack_targets_write.shape, device=device))
# Clear out the constraint row for each item in the attack targets
attack_targets_clear = attack_targets[:, :, None].expand(-1, -1, D.shape[-1])
D.scatter_(dim=1, index=attack_targets_clear, src=torch.zeros(attack_targets_clear.shape, device=device))
batch_inds = torch.arange(B, device=device)[:, None].expand(-1, K - 1)
attack_targets_pos = attack_targets[:, :-1] # [B, K-1]
attack_targets_neg = attack_targets[:, 1:] # [B, K-1]
attack_targets_neg_inds = torch.stack((
batch_inds,
attack_targets_neg,
attack_targets_neg
), dim=0) # [3, B, K - 1]
attack_targets_neg_inds = attack_targets_neg_inds.view(3, -1)
D[attack_targets_neg_inds[0], attack_targets_neg_inds[1], attack_targets_neg_inds[2]] = -1
attack_targets_pos_inds = torch.stack((
batch_inds,
attack_targets_neg,
attack_targets_pos
), dim=0) # [3, B, K - 1]
D[attack_targets_pos_inds[0], attack_targets_pos_inds[1], attack_targets_pos_inds[2]] = 1
A = head_W.detach().to(device)
b = head_bias.detach().to(device)
D = D.to(device)
#rand_feats: [B, num_features]
Q = 2*torch.eye(nz, device=device)[None].expand(B, -1, -1)
P = -2*rand_feats.to(device).expand(B, -1)
# G = torch.randn(B, nineq, nz, device=device)
G = -D@A
# h = torch.randn(B, nineq)
H = -(MARGIN - D @ b)
# Constraints are indexed by smaller logit
# First attack target isn't smaller than any logit, so its
# constraint index is redundant, but we keep it for easier parallelization
# Make this constraint all 0s
zero_inds = attack_targets[:, 0:1] # [B, 1]
H.scatter_(dim=1, index=zero_inds, src=torch.zeros(zero_inds.shape, device=device))
e = torch.empty(0, device=device)
Q_t, P_t, G_t, H_t = torch.load("qpinputs.p", map_location=device)
z_sol = qpth.qp.QPFunction(verbose=True, check_Q_spd=False)(Q, P, G, H, e, e).T
logits = A@z_sol + b[:, None]
x = 5 |