Spaces:
Sleeping
Sleeping
File size: 6,110 Bytes
a1eec31 fb08f6a a1eec31 fb08f6a a1eec31 fb08f6a a1eec31 9ddee47 a1eec31 9ddee47 a1eec31 0e9ddbd f28aba0 0e9ddbd f28aba0 0e9ddbd afd9e6c 0e9ddbd a1eec31 1b1da92 f28aba0 1b1da92 a1eec31 c8e5fe3 a1eec31 0e9ddbd a1eec31 187b850 0e9ddbd 8bf8763 a1eec31 8bf8763 a1eec31 8bf8763 a1eec31 187b850 1b1da92 a1eec31 0e9ddbd a1eec31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import torch
import gradio as gr
import torch
import os
from PIL import Image
from torch import autocast
from perpneg_diffusion.perpneg_stable_diffusion.pipeline_perpneg_stable_diffusion import PerpStableDiffusionPipeline
has_cuda = torch.cuda.is_available()
device = torch.device('cpu' if not has_cuda else 'cuda')
print(device)
# initialize stable diffusion model
pipe = PerpStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
# use_auth_token=True
).to(device)
def dummy(images, **kwargs):
return images, False
pipe.safety_checker = dummy
examples = [
[
"an armchair in the shape of an avocado | cushion in the armchair",
"1 | -0.3",
"145",
"7.5"
],
[
"an armchair in the shape of an avocado",
"1",
"145",
"7.5"
],
[
"a peacock, back view | a peacock, front view",
"1 | -3.5",
"30",
"7.5"
],
[
"a peacock, back view",
"1",
"30",
"7.5"
],
[
"A boy wearing sunglasses | a pair of sunglasses with white frame",
"1 | -0.35",
"200",
"11"
],
[
"A boy wearing sunglasses",
"1",
"200",
"11",
],
[
"a photo of an astronaut riding a horse | a jumping horse | a white horse",
"1 | -0.3 | -0.1",
"1988",
"10"
],
[
"a photo of an astronaut riding a horse | a jumping horse",
"1 | -0.3",
"1988",
"10"
],
[
"a photo of an astronaut riding a horse",
"1",
"1988",
"10"
],
]
def predict(prompt, weights, seed, scale=7.5, steps=50):
try:
with torch.no_grad():
has_cuda = torch.cuda.is_available()
with autocast('cpu' if not has_cuda else 'cuda'):
if has_cuda:
generator = torch.Generator('cuda').manual_seed(int(seed))
else:
generator = torch.Generator().manual_seed(int(seed))
image_perpneg = pipe(prompt, guidance_scale=float(scale), generator=generator,
num_inference_steps=steps, weights=weights)["images"][0]
return image_perpneg
except Exception as e:
print(e)
return None
MESSAGE = '''
Our method helps you achieve three amazing things:
1. Edit your generated images iteratively without damaging any important concepts.
2. Generate any view of objects that the original Stable Diffusion implementation couldn't produce. For example, you can generate a "peacock, back view" by using "peacock, front view" as the negative prompt. Compare our method to [Stable Diffusion](https://huggingface.co/spaces/stabilityai/stable-diffusion).
3. Alleviate the multihead problem in text-to-3D. Check out our work on this at [perp-neg.github.io](https://perp-neg.github.io/).
To use our demo, simply enter your main prompt first, followed by a set of positive and negative prompts separated by "|". When only one prompt is provided and the weight of that prompt is 1, it is identical to using Stable Diffusion. We provided those as examples for the sake of comparison of our algorithm to Stable Diffusion. Put the weight of main prompt as 1. Provide a complete sentence for negative prompt. The number of weights should be equal to the number of the prompts. Vary the weight of the negative prompts from -0.1 to -3 to produce desired results.
Use our demo to create some amazing and unique images!
'''
MESSAGE_END = '''
Unlike the original implementation, our method ensures that everything provided as the main prompt remains intact even when there is an overlap between the positive and negative prompts.
We've also integrated the idea of robust view generation in text-to-3D to avoid the multihead problem. For more details, please check out our work on this at [perp-neg.github.io](https://perp-neg.github.io/).
'''
app = gr.Blocks()
with app:
# gr.Markdown(
# "# **<p align='center'>AMLDS Video Tagging</p>**"
# )
gr.Markdown(
"# **<p align='center'>Perp-Neg: Iterative Editing and Robust View Generation</p>**"
)
gr.Markdown(
"""
### **<p align='center'>Demo created by Reza Armandpour and Huangjie Zheng</p>**
"""
)
gr.Markdown(MESSAGE)
with gr.Row():
with gr.Column():
# with gr.Tab(label="Inputs"):
# gr.Markdown(
# "### Prompts (a list of prompts separated by vertical bar | )"
# )
prompt = gr.Textbox(label="Prompts (a list of prompts separated by vertical bar | ):", show_label=True, placeholder="a peacock, back view | a peacock, front view")
weights = gr.Textbox(
label="Weights (a list of weights separated by vertical bar | )", show_label=True, placeholder="1 | -3.5"
)
seed = gr.Textbox(
label="Seed", show_label=True, value=30
)
scale = gr.Textbox(
label="Guidance scale", show_label=True, value=7.5
)
image_gen_btn = gr.Button(value="Generate")
with gr.Column():
img_output = gr.Image(
label="Result",
show_label=True,
)
gr.Markdown("**Examples:**")
gr.Examples(
examples,
[prompt, weights, seed, scale],
[img_output],
fn=predict,
cache_examples=False,
)
image_gen_btn.click(
predict,
inputs=[prompt, weights, seed, scale],
outputs=[img_output],
)
gr.Markdown("""
\n The algorithem is based on the paper: [Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond.](https://Perp-Neg.github.io)
""")
gr.Markdown(MESSAGE_END)
gr.Markdown(
"""
\n Demo created by: Reza Armandpour and Huangjie Zheng</a>.
"""
)
app.launch()
|