File size: 3,611 Bytes
c08ab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
from tqdm import tqdm
from datasets import load_dataset

from utils.preprocessing import get_transforms
from src.dataset import HumanActionDataset
from models.resnet_model import ResNet18

import os

def train_model():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")

    # Load dataset from Hugging Face
    ds = load_dataset("Bingsu/Human_Action_Recognition")

    # Get train dataset and apply transforms
    transform = get_transforms()
    full_dataset = HumanActionDataset(ds["train"], transform=transform)

    # Split train into train/val (e.g., 90% train, 10% val)
    train_size = int(0.9 * len(full_dataset))
    val_size = len(full_dataset) - train_size
    train_dataset, val_dataset = random_split(full_dataset, [train_size, val_size])

    # Use batch size 32 (good balance between speed and generalization on CPU)
    train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
    val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=4)

    # Initialize model
    model = ResNet18(num_classes=15).to(device)

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

    # Scheduler without verbose (fix for your PyTorch version)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, mode='min', factor=0.5, patience=2
    )

    best_val_acc = 0.0
    epochs = 10

    for epoch in range(epochs):
        model.train()
        train_loss = 0.0
        correct = 0
        total = 0

        loop = tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs} Training")
        for images, labels in loop:
            images, labels = images.to(device), labels.to(device)

            optimizer.zero_grad()
            outputs = model(images)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

            train_loss += loss.item() * images.size(0)
            _, predicted = torch.max(outputs, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

            loop.set_postfix(loss=loss.item(), acc=correct/total)

        train_loss /= total
        train_acc = correct / total

        # Validation
        model.eval()
        val_loss = 0.0
        val_correct = 0
        val_total = 0

        with torch.no_grad():
            for images, labels in val_loader:
                images, labels = images.to(device), labels.to(device)
                outputs = model(images)
                loss = criterion(outputs, labels)

                val_loss += loss.item() * images.size(0)
                _, predicted = torch.max(outputs, 1)
                val_total += labels.size(0)
                val_correct += (predicted == labels).sum().item()

        val_loss /= val_total
        val_acc = val_correct / val_total

        print(f"Epoch {epoch+1}/{epochs} | "
              f"Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.4f} | "
              f"Val Loss: {val_loss:.4f} | Val Acc: {val_acc:.4f}")

        # Step the scheduler with validation loss
        scheduler.step(val_loss)

        # Save best model
        if val_acc > best_val_acc:
            best_val_acc = val_acc
            os.makedirs("models", exist_ok=True)
            torch.save(model.state_dict(), "models/best_model.pth")
            print("Saved best model.")

if __name__ == "__main__":
    train_model()