File size: 16,782 Bytes
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d672a7
aeb6dbc
 
 
 
 
 
 
6d672a7
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d672a7
aeb6dbc
 
 
6d672a7
aeb6dbc
6cdee07
aeb6dbc
 
6d672a7
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d672a7
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
6d672a7
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import os
import json
import re
from copy import deepcopy

from api.db import LLMType, ParserType
from api.db.db_models import Dialog, Conversation
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.settings import chat_logger, retrievaler, kg_retrievaler
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp import keyword_extraction
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder
from api.utils.file_utils import get_project_base_directory


class DialogService(CommonService):
    model = Dialog


class ConversationService(CommonService):
    model = Conversation


def message_fit_in(msg, max_length=4000):
    def count():
        nonlocal msg
        tks_cnts = []
        for m in msg:
            tks_cnts.append(
                {"role": m["role"], "count": num_tokens_from_string(m["content"])})
        total = 0
        for m in tks_cnts:
            total += m["count"]
        return total

    c = count()
    if c < max_length:
        return c, msg

    msg_ = [m for m in msg[:-1] if m["role"] == "system"]
    msg_.append(msg[-1])
    msg = msg_
    c = count()
    if c < max_length:
        return c, msg

    ll = num_tokens_from_string(msg_[0]["content"])
    l = num_tokens_from_string(msg_[-1]["content"])
    if ll / (ll + l) > 0.8:
        m = msg_[0]["content"]
        m = encoder.decode(encoder.encode(m)[:max_length - l])
        msg[0]["content"] = m
        return max_length, msg

    m = msg_[1]["content"]
    m = encoder.decode(encoder.encode(m)[:max_length - l])
    msg[1]["content"] = m
    return max_length, msg


def llm_id2llm_type(llm_id):
    fnm = os.path.join(get_project_base_directory(), "conf")
    llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
    for llm_factory in llm_factories["factory_llm_infos"]:
        for llm in llm_factory["llm"]:
            if llm_id == llm["llm_name"]:
                return llm["model_type"].strip(",")[-1]
                

def chat(dialog, messages, stream=True, **kwargs):
    assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
    llm = LLMService.query(llm_name=dialog.llm_id)
    if not llm:
        llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=dialog.llm_id)
        if not llm:
            raise LookupError("LLM(%s) not found" % dialog.llm_id)
        max_tokens = 8192
    else:
        max_tokens = llm[0].max_tokens
    kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
    embd_nms = list(set([kb.embd_id for kb in kbs]))
    if len(embd_nms) != 1:
        yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
        return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}

    is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
    retr = retrievaler if not is_kg else kg_retrievaler

    questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
    attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
    if "doc_ids" in messages[-1]:
        attachments = messages[-1]["doc_ids"]
        for m in messages[:-1]:
            if "doc_ids" in m:
                attachments.extend(m["doc_ids"])

    embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
    if llm_id2llm_type(dialog.llm_id) == "image2text":
        chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
    else:
        chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)

    prompt_config = dialog.prompt_config
    field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
    # try to use sql if field mapping is good to go
    if field_map:
        chat_logger.info("Use SQL to retrieval:{}".format(questions[-1]))
        ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
        if ans:
            yield ans
            return

    for p in prompt_config["parameters"]:
        if p["key"] == "knowledge":
            continue
        if p["key"] not in kwargs and not p["optional"]:
            raise KeyError("Miss parameter: " + p["key"])
        if p["key"] not in kwargs:
            prompt_config["system"] = prompt_config["system"].replace(
                "{%s}" % p["key"], " ")

    rerank_mdl = None
    if dialog.rerank_id:
        rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)

    for _ in range(len(questions) // 2):
        questions.append(questions[-1])
    if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
        kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
    else:
        if prompt_config.get("keyword", False):
            questions[-1] += keyword_extraction(chat_mdl, questions[-1])
        kbinfos = retr.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
                                        dialog.similarity_threshold,
                                        dialog.vector_similarity_weight,
                                        doc_ids=attachments,
                                        top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
    knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
    #self-rag
    if dialog.prompt_config.get("self_rag") and not relevant(dialog.tenant_id, dialog.llm_id, questions[-1], knowledges):
        questions[-1] = rewrite(dialog.tenant_id, dialog.llm_id, questions[-1])
        kbinfos = retr.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
                                        dialog.similarity_threshold,
                                        dialog.vector_similarity_weight,
                                        doc_ids=attachments,
                                        top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
        knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]

    chat_logger.info(
        "{}->{}".format(" ".join(questions), "\n->".join(knowledges)))

    if not knowledges and prompt_config.get("empty_response"):
        yield {"answer": prompt_config["empty_response"], "reference": kbinfos}
        return {"answer": prompt_config["empty_response"], "reference": kbinfos}

    kwargs["knowledge"] = "\n".join(knowledges)
    gen_conf = dialog.llm_setting

    msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
    msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
                for m in messages if m["role"] != "system"])
    used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
    assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
    prompt = msg[0]["content"]

    if "max_tokens" in gen_conf:
        gen_conf["max_tokens"] = min(
            gen_conf["max_tokens"],
            max_tokens - used_token_count)

    def decorate_answer(answer):
        nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt
        refs = []
        if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
            answer, idx = retr.insert_citations(answer,
                                                       [ck["content_ltks"]
                                                        for ck in kbinfos["chunks"]],
                                                       [ck["vector"]
                                                        for ck in kbinfos["chunks"]],
                                                       embd_mdl,
                                                       tkweight=1 - dialog.vector_similarity_weight,
                                                       vtweight=dialog.vector_similarity_weight)
            idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
            recall_docs = [
                d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
            if not recall_docs: recall_docs = kbinfos["doc_aggs"]
            kbinfos["doc_aggs"] = recall_docs

            refs = deepcopy(kbinfos)
            for c in refs["chunks"]:
                if c.get("vector"):
                    del c["vector"]

        if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
            answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
        return {"answer": answer, "reference": refs, "prompt": prompt}

    if stream:
        answer = ""
        for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf):
            answer = ans
            yield {"answer": answer, "reference": {}}
        yield decorate_answer(answer)
    else:
        answer = chat_mdl.chat(prompt, msg[1:], gen_conf)
        chat_logger.info("User: {}|Assistant: {}".format(
            msg[-1]["content"], answer))
        yield decorate_answer(answer)


def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
    sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。"
    user_promt = """
表名:{};
数据库表字段说明如下:
{}

问题如下:
{}
请写出SQL, 且只要SQL,不要有其他说明及文字。
""".format(
        index_name(tenant_id),
        "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
        question
    )
    tried_times = 0

    def get_table():
        nonlocal sys_prompt, user_promt, question, tried_times
        sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
            "temperature": 0.06})
        print(user_promt, sql)
        chat_logger.info(f"“{question}”==>{user_promt} get SQL: {sql}")
        sql = re.sub(r"[\r\n]+", " ", sql.lower())
        sql = re.sub(r".*select ", "select ", sql.lower())
        sql = re.sub(r" +", " ", sql)
        sql = re.sub(r"([;;]|```).*", "", sql)
        if sql[:len("select ")] != "select ":
            return None, None
        if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
            if sql[:len("select *")] != "select *":
                sql = "select doc_id,docnm_kwd," + sql[6:]
            else:
                flds = []
                for k in field_map.keys():
                    if k in forbidden_select_fields4resume:
                        continue
                    if len(flds) > 11:
                        break
                    flds.append(k)
                sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]

        print(f"“{question}” get SQL(refined): {sql}")

        chat_logger.info(f"“{question}” get SQL(refined): {sql}")
        tried_times += 1
        return retrievaler.sql_retrieval(sql, format="json"), sql

    tbl, sql = get_table()
    if tbl is None:
        return None
    if tbl.get("error") and tried_times <= 2:
        user_promt = """
        表名:{};
        数据库表字段说明如下:
        {}

        问题如下:
        {}

        你上一次给出的错误SQL如下:
        {}

        后台报错如下:
        {}

        请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。
        """.format(
            index_name(tenant_id),
            "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
            question, sql, tbl["error"]
        )
        tbl, sql = get_table()
        chat_logger.info("TRY it again: {}".format(sql))

    chat_logger.info("GET table: {}".format(tbl))
    print(tbl)
    if tbl.get("error") or len(tbl["rows"]) == 0:
        return None

    docid_idx = set([ii for ii, c in enumerate(
        tbl["columns"]) if c["name"] == "doc_id"])
    docnm_idx = set([ii for ii, c in enumerate(
        tbl["columns"]) if c["name"] == "docnm_kwd"])
    clmn_idx = [ii for ii in range(
        len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]

    # compose markdown table
    clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
                                                                        tbl["columns"][i]["name"])) for i in
                            clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")

    line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
           ("|------|" if docid_idx and docid_idx else "")

    rows = ["|" +
            "|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
            "|" for r in tbl["rows"]]
    if quota:
        rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
    else:
        rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
    rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)

    if not docid_idx or not docnm_idx:
        chat_logger.warning("SQL missing field: " + sql)
        return {
            "answer": "\n".join([clmns, line, rows]),
            "reference": {"chunks": [], "doc_aggs": []},
            "prompt": sys_prompt
        }

    docid_idx = list(docid_idx)[0]
    docnm_idx = list(docnm_idx)[0]
    doc_aggs = {}
    for r in tbl["rows"]:
        if r[docid_idx] not in doc_aggs:
            doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
        doc_aggs[r[docid_idx]]["count"] += 1
    return {
        "answer": "\n".join([clmns, line, rows]),
        "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
                      "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
                                   doc_aggs.items()]},
        "prompt": sys_prompt
    }


def relevant(tenant_id, llm_id, question, contents: list):
    if llm_id2llm_type(llm_id) == "image2text":
        chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
    else:
        chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
    prompt = """
        You are a grader assessing relevance of a retrieved document to a user question. 
        It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
        If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. 
        Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
        No other words needed except 'yes' or 'no'.
    """
    if not contents:return False
    contents = "Documents: \n" + "   - ".join(contents)
    contents = f"Question: {question}\n" + contents
    if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
        contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
    ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
    if ans.lower().find("yes") >= 0: return True
    return False


def rewrite(tenant_id, llm_id, question):
    if llm_id2llm_type(llm_id) == "image2text":
        chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
    else:
        chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
    prompt = """
        You are an expert at query expansion to generate a paraphrasing of a question.
        I can't retrieval relevant information from the knowledge base by using user's question directly.     
        You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase, 
        writing the abbreviation in its entirety, adding some extra descriptions or explanations, 
        changing the way of expression, translating the original question into another language (English/Chinese), etc. 
        And return 5 versions of question and one is from translation.
        Just list the question. No other words are needed.
    """
    ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
    return ans