File size: 12,573 Bytes
62e78ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from copy import deepcopy
import onnxruntime as ort
from huggingface_hub import snapshot_download
from . import seeit
from .operators import *
from rag.settings import cron_logger
class Recognizer(object):
def __init__(self, label_list, task_name, model_dir=None):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
if not model_dir:
model_dir = snapshot_download(repo_id="InfiniFlow/ocr")
model_file_path = os.path.join(model_dir, task_name + ".onnx")
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
if ort.get_device() == "GPU":
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CUDAExecutionProvider'])
else:
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
self.label_list = label_list
@staticmethod
def sort_Y_firstly(arr, threashold):
# sort using y1 first and then x1
arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
and arr[j + 1]["x0"] < arr[j]["x0"]:
tmp = deepcopy(arr[j])
arr[j] = deepcopy(arr[j + 1])
arr[j + 1] = deepcopy(tmp)
return arr
@staticmethod
def sort_X_firstly(arr, threashold, copy=True):
# sort using y1 first and then x1
arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
and arr[j + 1]["top"] < arr[j]["top"]:
tmp = deepcopy(arr[j]) if copy else arr[j]
arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
arr[j + 1] = deepcopy(tmp) if copy else tmp
return arr
@staticmethod
def sort_C_firstly(arr, thr=0):
# sort using y1 first and then x1
# sorted(arr, key=lambda r: (r["x0"], r["top"]))
arr = Recognizer.sort_X_firstly(arr, thr)
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if "C" not in arr[j] or "C" not in arr[j + 1]:
continue
if arr[j + 1]["C"] < arr[j]["C"] \
or (
arr[j + 1]["C"] == arr[j]["C"]
and arr[j + 1]["top"] < arr[j]["top"]
):
tmp = arr[j]
arr[j] = arr[j + 1]
arr[j + 1] = tmp
return arr
return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
@staticmethod
def sort_R_firstly(arr, thr=0):
# sort using y1 first and then x1
# sorted(arr, key=lambda r: (r["top"], r["x0"]))
arr = Recognizer.sort_Y_firstly(arr, thr)
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
if "R" not in arr[j] or "R" not in arr[j + 1]:
continue
if arr[j + 1]["R"] < arr[j]["R"] \
or (
arr[j + 1]["R"] == arr[j]["R"]
and arr[j + 1]["x0"] < arr[j]["x0"]
):
tmp = arr[j]
arr[j] = arr[j + 1]
arr[j + 1] = tmp
return arr
@staticmethod
def overlapped_area(a, b, ratio=True):
tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
if b["x0"] > x1 or b["x1"] < x0:
return 0
if b["bottom"] < tp or b["top"] > btm:
return 0
x0_ = max(b["x0"], x0)
x1_ = min(b["x1"], x1)
assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format(
tp, btm, x0, x1, b)
tp_ = max(b["top"], tp)
btm_ = min(b["bottom"], btm)
assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format(
tp, btm, x0, x1, b)
ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
x0 != 0 and btm - tp != 0 else 0
if ov > 0 and ratio:
ov /= (x1 - x0) * (btm - tp)
return ov
@staticmethod
def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
def notOverlapped(a, b):
return any([a["x1"] < b["x0"],
a["x0"] > b["x1"],
a["bottom"] < b["top"],
a["top"] > b["bottom"]])
i = 0
while i + 1 < len(layouts):
j = i + 1
while j < min(i + far, len(layouts)) \
and (layouts[i].get("type", "") != layouts[j].get("type", "")
or notOverlapped(layouts[i], layouts[j])):
j += 1
if j >= min(i + far, len(layouts)):
i += 1
continue
if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
i += 1
continue
if layouts[i].get("score") and layouts[j].get("score"):
if layouts[i]["score"] > layouts[j]["score"]:
layouts.pop(j)
else:
layouts.pop(i)
continue
area_i, area_i_1 = 0, 0
for b in boxes:
if not notOverlapped(b, layouts[i]):
area_i += Recognizer.overlapped_area(b, layouts[i], False)
if not notOverlapped(b, layouts[j]):
area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
if area_i > area_i_1:
layouts.pop(j)
else:
layouts.pop(i)
return layouts
def create_inputs(self, imgs, im_info):
"""generate input for different model type
Args:
imgs (list(numpy)): list of images (np.ndarray)
im_info (list(dict)): list of image info
Returns:
inputs (dict): input of model
"""
inputs = {}
im_shape = []
scale_factor = []
if len(imgs) == 1:
inputs['image'] = np.array((imgs[0],)).astype('float32')
inputs['im_shape'] = np.array(
(im_info[0]['im_shape'],)).astype('float32')
inputs['scale_factor'] = np.array(
(im_info[0]['scale_factor'],)).astype('float32')
return inputs
for e in im_info:
im_shape.append(np.array((e['im_shape'],)).astype('float32'))
scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
inputs['im_shape'] = np.concatenate(im_shape, axis=0)
inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
max_shape_h = max([e[0] for e in imgs_shape])
max_shape_w = max([e[1] for e in imgs_shape])
padding_imgs = []
for img in imgs:
im_c, im_h, im_w = img.shape[:]
padding_im = np.zeros(
(im_c, max_shape_h, max_shape_w), dtype=np.float32)
padding_im[:, :im_h, :im_w] = img
padding_imgs.append(padding_im)
inputs['image'] = np.stack(padding_imgs, axis=0)
return inputs
@staticmethod
def find_overlapped(box, boxes_sorted_by_y, naive=False):
if not boxes_sorted_by_y:
return
bxs = boxes_sorted_by_y
s, e, ii = 0, len(bxs), 0
while s < e and not naive:
ii = (e + s) // 2
pv = bxs[ii]
if box["bottom"] < pv["top"]:
e = ii
continue
if box["top"] > pv["bottom"]:
s = ii + 1
continue
break
while s < ii:
if box["top"] > bxs[s]["bottom"]:
s += 1
break
while e - 1 > ii:
if box["bottom"] < bxs[e - 1]["top"]:
e -= 1
break
max_overlaped_i, max_overlaped = None, 0
for i in range(s, e):
ov = Recognizer.overlapped_area(bxs[i], box)
if ov <= max_overlaped:
continue
max_overlaped_i = i
max_overlaped = ov
return max_overlaped_i
@staticmethod
def find_overlapped_with_threashold(box, boxes, thr=0.3):
if not boxes:
return
max_overlaped_i, max_overlaped, _max_overlaped = None, thr, 0
s, e = 0, len(boxes)
for i in range(s, e):
ov = Recognizer.overlapped_area(box, boxes[i])
_ov = Recognizer.overlapped_area(boxes[i], box)
if (ov, _ov) < (max_overlaped, _max_overlaped):
continue
max_overlaped_i = i
max_overlaped = ov
_max_overlaped = _ov
return max_overlaped_i
def preprocess(self, image_list):
preprocess_ops = []
for op_info in [
{'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
{'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
{'type': 'Permute'},
{'stride': 32, 'type': 'PadStride'}
]:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
preprocess_ops.append(eval(op_type)(**new_op_info))
inputs = []
for im_path in image_list:
im, im_info = preprocess(im_path, preprocess_ops)
inputs.append({"image": np.array((im,)).astype('float32'), "scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
return inputs
def __call__(self, image_list, thr=0.7, batch_size=16):
res = []
imgs = []
for i in range(len(image_list)):
if not isinstance(image_list[i], np.ndarray):
imgs.append(np.array(image_list[i]))
else: imgs.append(image_list[i])
batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
for i in range(batch_loop_cnt):
start_index = i * batch_size
end_index = min((i + 1) * batch_size, len(imgs))
batch_image_list = imgs[start_index:end_index]
inputs = self.preprocess(batch_image_list)
for ins in inputs:
bb = []
for b in self.ort_sess.run(None, ins)[0]:
clsid, bbox, score = int(b[0]), b[2:], b[1]
if score < thr:
continue
if clsid >= len(self.label_list):
cron_logger.warning(f"bad category id")
continue
bb.append({
"type": self.label_list[clsid].lower(),
"bbox": [float(t) for t in bbox.tolist()],
"score": float(score)
})
res.append(bb)
#seeit.save_results(image_list, res, self.label_list, threshold=thr)
return res
|