File size: 19,622 Bytes
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b9967
 
 
aeb6dbc
6a44b6e
 
36b9967
 
aeb6dbc
36b9967
 
aeb6dbc
 
 
 
 
 
36b9967
 
aeb6dbc
 
4d0b8a7
6a44b6e
aeb6dbc
36b9967
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b9967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a44b6e
 
 
36b9967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d0b8a7
36b9967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a44b6e
 
 
36b9967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import hashlib
import json
import os
import random
import re
import traceback
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from datetime import datetime
from io import BytesIO

from elasticsearch_dsl import Q
from peewee import fn

from api.db.db_utils import bulk_insert_into_db
from api.settings import stat_logger
from api.utils import current_timestamp, get_format_time, get_uuid
from api.utils.file_utils import get_project_base_directory
from graphrag.mind_map_extractor import MindMapExtractor
from rag.settings import SVR_QUEUE_NAME
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils.storage_factory import STORAGE_IMPL
from rag.nlp import search, rag_tokenizer

from api.db import FileType, TaskStatus, ParserType, LLMType
from api.db.db_models import DB, Knowledgebase, Tenant, Task
from api.db.db_models import Document
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db import StatusEnum
from rag.utils.redis_conn import REDIS_CONN


class DocumentService(CommonService):
    model = Document

    @classmethod
    @DB.connection_context()
    def get_by_kb_id(cls, kb_id, page_number, items_per_page,
                     orderby, desc, keywords):
        if keywords:
            docs = cls.model.select().where(
                (cls.model.kb_id == kb_id),
                (fn.LOWER(cls.model.name).contains(keywords.lower()))
            )
        else:
            docs = cls.model.select().where(cls.model.kb_id == kb_id)
        count = docs.count()
        if desc:
            docs = docs.order_by(cls.model.getter_by(orderby).desc())
        else:
            docs = docs.order_by(cls.model.getter_by(orderby).asc())

        docs = docs.paginate(page_number, items_per_page)

        return list(docs.dicts()), count

    @classmethod
    @DB.connection_context()
    def list_documents_in_dataset(cls, dataset_id, offset, count, order_by, descend, keywords):
        if keywords:
            docs = cls.model.select().where(
                (cls.model.kb_id == dataset_id),
                (fn.LOWER(cls.model.name).contains(keywords.lower()))
            )
        else:
            docs = cls.model.select().where(cls.model.kb_id == dataset_id)

        total = docs.count()

        if descend == 'True':
            docs = docs.order_by(cls.model.getter_by(order_by).desc())
        if descend == 'False':
            docs = docs.order_by(cls.model.getter_by(order_by).asc())

        docs = list(docs.dicts())
        docs_length = len(docs)

        if offset < 0 or offset > docs_length:
            raise IndexError("Offset is out of the valid range.")

        if count == -1:
            return docs[offset:], total

        return docs[offset:offset + count], total

    @classmethod
    @DB.connection_context()
    def insert(cls, doc):
        if not cls.save(**doc):
            raise RuntimeError("Database error (Document)!")
        e, doc = cls.get_by_id(doc["id"])
        if not e:
            raise RuntimeError("Database error (Document retrieval)!")
        e, kb = KnowledgebaseService.get_by_id(doc.kb_id)
        if not KnowledgebaseService.update_by_id(
                kb.id, {"doc_num": kb.doc_num + 1}):
            raise RuntimeError("Database error (Knowledgebase)!")
        return doc

    @classmethod
    @DB.connection_context()
    def remove_document(cls, doc, tenant_id):
        ELASTICSEARCH.deleteByQuery(
                Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))
        cls.clear_chunk_num(doc.id)
        return cls.delete_by_id(doc.id)

    @classmethod
    @DB.connection_context()
    def get_newly_uploaded(cls):
        fields = [
            cls.model.id,
            cls.model.kb_id,
            cls.model.parser_id,
            cls.model.parser_config,
            cls.model.name,
            cls.model.type,
            cls.model.location,
            cls.model.size,
            Knowledgebase.tenant_id,
            Tenant.embd_id,
            Tenant.img2txt_id,
            Tenant.asr_id,
            cls.model.update_time]
        docs = cls.model.select(*fields) \
            .join(Knowledgebase, on=(cls.model.kb_id == Knowledgebase.id)) \
            .join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))\
            .where(
                cls.model.status == StatusEnum.VALID.value,
                ~(cls.model.type == FileType.VIRTUAL.value),
                cls.model.progress == 0,
                cls.model.update_time >= current_timestamp() - 1000 * 600,
                cls.model.run == TaskStatus.RUNNING.value)\
            .order_by(cls.model.update_time.asc())
        return list(docs.dicts())

    @classmethod
    @DB.connection_context()
    def get_unfinished_docs(cls):
        fields = [cls.model.id, cls.model.process_begin_at, cls.model.parser_config, cls.model.progress_msg, cls.model.run]
        docs = cls.model.select(*fields) \
            .where(
                cls.model.status == StatusEnum.VALID.value,
                ~(cls.model.type == FileType.VIRTUAL.value),
                cls.model.progress < 1,
                cls.model.progress > 0)
        return list(docs.dicts())

    @classmethod
    @DB.connection_context()
    def increment_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
        num = cls.model.update(token_num=cls.model.token_num + token_num,
                               chunk_num=cls.model.chunk_num + chunk_num,
                               process_duation=cls.model.process_duation + duation).where(
            cls.model.id == doc_id).execute()
        if num == 0:
            raise LookupError(
                "Document not found which is supposed to be there")
        num = Knowledgebase.update(
            token_num=Knowledgebase.token_num +
            token_num,
            chunk_num=Knowledgebase.chunk_num +
            chunk_num).where(
            Knowledgebase.id == kb_id).execute()
        return num
    
    @classmethod
    @DB.connection_context()
    def decrement_chunk_num(cls, doc_id, kb_id, token_num, chunk_num, duation):
        num = cls.model.update(token_num=cls.model.token_num - token_num,
                               chunk_num=cls.model.chunk_num - chunk_num,
                               process_duation=cls.model.process_duation + duation).where(
            cls.model.id == doc_id).execute()
        if num == 0:
            raise LookupError(
                "Document not found which is supposed to be there")
        num = Knowledgebase.update(
            token_num=Knowledgebase.token_num -
            token_num,
            chunk_num=Knowledgebase.chunk_num -
            chunk_num
        ).where(
            Knowledgebase.id == kb_id).execute()
        return num
    
    @classmethod
    @DB.connection_context()
    def clear_chunk_num(cls, doc_id):
        doc = cls.model.get_by_id(doc_id)
        assert doc, "Can't fine document in database."

        num = Knowledgebase.update(
            token_num=Knowledgebase.token_num -
            doc.token_num,
            chunk_num=Knowledgebase.chunk_num -
            doc.chunk_num,
            doc_num=Knowledgebase.doc_num-1
        ).where(
            Knowledgebase.id == doc.kb_id).execute()
        return num

    @classmethod
    @DB.connection_context()
    def get_tenant_id(cls, doc_id):
        docs = cls.model.select(
            Knowledgebase.tenant_id).join(
            Knowledgebase, on=(
                Knowledgebase.id == cls.model.kb_id)).where(
                cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
        docs = docs.dicts()
        if not docs:
            return
        return docs[0]["tenant_id"]

    @classmethod
    @DB.connection_context()
    def get_tenant_id_by_name(cls, name):
        docs = cls.model.select(
            Knowledgebase.tenant_id).join(
            Knowledgebase, on=(
                    Knowledgebase.id == cls.model.kb_id)).where(
            cls.model.name == name, Knowledgebase.status == StatusEnum.VALID.value)
        docs = docs.dicts()
        if not docs:
            return
        return docs[0]["tenant_id"]

    @classmethod
    @DB.connection_context()
    def get_embd_id(cls, doc_id):
        docs = cls.model.select(
            Knowledgebase.embd_id).join(
            Knowledgebase, on=(
                Knowledgebase.id == cls.model.kb_id)).where(
                cls.model.id == doc_id, Knowledgebase.status == StatusEnum.VALID.value)
        docs = docs.dicts()
        if not docs:
            return
        return docs[0]["embd_id"]
    
    @classmethod
    @DB.connection_context()
    def get_doc_id_by_doc_name(cls, doc_name):
        fields = [cls.model.id]
        doc_id = cls.model.select(*fields) \
            .where(cls.model.name == doc_name)
        doc_id = doc_id.dicts()
        if not doc_id:
            return
        return doc_id[0]["id"]

    @classmethod
    @DB.connection_context()
    def get_thumbnails(cls, docids):
        fields = [cls.model.id, cls.model.thumbnail]
        return list(cls.model.select(
            *fields).where(cls.model.id.in_(docids)).dicts())

    @classmethod
    @DB.connection_context()
    def update_parser_config(cls, id, config):
        e, d = cls.get_by_id(id)
        if not e:
            raise LookupError(f"Document({id}) not found.")

        def dfs_update(old, new):
            for k, v in new.items():
                if k not in old:
                    old[k] = v
                    continue
                if isinstance(v, dict):
                    assert isinstance(old[k], dict)
                    dfs_update(old[k], v)
                else:
                    old[k] = v
        dfs_update(d.parser_config, config)
        cls.update_by_id(id, {"parser_config": d.parser_config})

    @classmethod
    @DB.connection_context()
    def get_doc_count(cls, tenant_id):
        docs = cls.model.select(cls.model.id).join(Knowledgebase,
                                                   on=(Knowledgebase.id == cls.model.kb_id)).where(
            Knowledgebase.tenant_id == tenant_id)
        return len(docs)

    @classmethod
    @DB.connection_context()
    def begin2parse(cls, docid):
        cls.update_by_id(
            docid, {"progress": random.random() * 1 / 100.,
                    "progress_msg": "Task dispatched...",
                    "process_begin_at": get_format_time()
                    })

    @classmethod
    @DB.connection_context()
    def update_progress(cls):
        docs = cls.get_unfinished_docs()
        for d in docs:
            try:
                tsks = Task.query(doc_id=d["id"], order_by=Task.create_time)
                if not tsks:
                    continue
                msg = []
                prg = 0
                finished = True
                bad = 0
                e, doc = DocumentService.get_by_id(d["id"])
                status = doc.run#TaskStatus.RUNNING.value
                for t in tsks:
                    if 0 <= t.progress < 1:
                        finished = False
                    prg += t.progress if t.progress >= 0 else 0
                    if t.progress_msg not in msg:
                        msg.append(t.progress_msg)
                    if t.progress == -1:
                        bad += 1
                prg /= len(tsks)
                if finished and bad:
                    prg = -1
                    status = TaskStatus.FAIL.value
                elif finished:
                    if d["parser_config"].get("raptor", {}).get("use_raptor") and d["progress_msg"].lower().find(" raptor")<0:
                        queue_raptor_tasks(d)
                        prg *= 0.98
                        msg.append("------ RAPTOR -------")
                    else:
                        status = TaskStatus.DONE.value

                msg = "\n".join(msg)
                info = {
                    "process_duation": datetime.timestamp(
                        datetime.now()) -
                                       d["process_begin_at"].timestamp(),
                    "run": status}
                if prg != 0:
                    info["progress"] = prg
                if msg:
                    info["progress_msg"] = msg
                cls.update_by_id(d["id"], info)
            except Exception as e:
                stat_logger.error("fetch task exception:" + str(e))

    @classmethod
    @DB.connection_context()
    def get_kb_doc_count(cls, kb_id):
        return len(cls.model.select(cls.model.id).where(
            cls.model.kb_id == kb_id).dicts())


    @classmethod
    @DB.connection_context()
    def do_cancel(cls, doc_id):
        try:
            _, doc = DocumentService.get_by_id(doc_id)
            return doc.run == TaskStatus.CANCEL.value or doc.progress < 0
        except Exception as e:
            pass
        return False


def queue_raptor_tasks(doc):
    def new_task():
        nonlocal doc
        return {
            "id": get_uuid(),
            "doc_id": doc["id"],
            "from_page": 0,
            "to_page": -1,
            "progress_msg": "Start to do RAPTOR (Recursive Abstractive Processing For Tree-Organized Retrieval)."
        }

    task = new_task()
    bulk_insert_into_db(Task, [task], True)
    task["type"] = "raptor"
    assert REDIS_CONN.queue_product(SVR_QUEUE_NAME, message=task), "Can't access Redis. Please check the Redis' status."


def doc_upload_and_parse(conversation_id, file_objs, user_id):
    from rag.app import presentation, picture, naive, audio, email
    from api.db.services.dialog_service import ConversationService, DialogService
    from api.db.services.file_service import FileService
    from api.db.services.llm_service import LLMBundle
    from api.db.services.user_service import TenantService
    from api.db.services.api_service import API4ConversationService

    e, conv = ConversationService.get_by_id(conversation_id)
    if not e:
        e, conv = API4ConversationService.get_by_id(conversation_id)
    assert e, "Conversation not found!"

    e, dia = DialogService.get_by_id(conv.dialog_id)
    kb_id = dia.kb_ids[0]
    e, kb = KnowledgebaseService.get_by_id(kb_id)
    if not e:
        raise LookupError("Can't find this knowledgebase!")

    idxnm = search.index_name(kb.tenant_id)
    if not ELASTICSEARCH.indexExist(idxnm):
        ELASTICSEARCH.createIdx(idxnm, json.load(
            open(os.path.join(get_project_base_directory(), "conf", "mapping.json"), "r")))

    embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)

    err, files = FileService.upload_document(kb, file_objs, user_id)
    assert not err, "\n".join(err)

    def dummy(prog=None, msg=""):
        pass

    FACTORY = {
        ParserType.PRESENTATION.value: presentation,
        ParserType.PICTURE.value: picture,
        ParserType.AUDIO.value: audio,
        ParserType.EMAIL.value: email
    }
    parser_config = {"chunk_token_num": 4096, "delimiter": "\n!?;。;!?", "layout_recognize": False}
    exe = ThreadPoolExecutor(max_workers=12)
    threads = []
    doc_nm = {}
    for d, blob in files:
        doc_nm[d["id"]] = d["name"]
    for d, blob in files:
        kwargs = {
            "callback": dummy,
            "parser_config": parser_config,
            "from_page": 0,
            "to_page": 100000,
            "tenant_id": kb.tenant_id,
            "lang": kb.language
        }
        threads.append(exe.submit(FACTORY.get(d["parser_id"], naive).chunk, d["name"], blob, **kwargs))

    for (docinfo, _), th in zip(files, threads):
        docs = []
        doc = {
            "doc_id": docinfo["id"],
            "kb_id": [kb.id]
        }
        for ck in th.result():
            d = deepcopy(doc)
            d.update(ck)
            md5 = hashlib.md5()
            md5.update((ck["content_with_weight"] +
                        str(d["doc_id"])).encode("utf-8"))
            d["_id"] = md5.hexdigest()
            d["create_time"] = str(datetime.now()).replace("T", " ")[:19]
            d["create_timestamp_flt"] = datetime.now().timestamp()
            if not d.get("image"):
                docs.append(d)
                continue

            output_buffer = BytesIO()
            if isinstance(d["image"], bytes):
                output_buffer = BytesIO(d["image"])
            else:
                d["image"].save(output_buffer, format='JPEG')

            STORAGE_IMPL.put(kb.id, d["_id"], output_buffer.getvalue())
            d["img_id"] = "{}-{}".format(kb.id, d["_id"])
            del d["image"]
            docs.append(d)

    parser_ids = {d["id"]: d["parser_id"] for d, _ in files}
    docids = [d["id"] for d, _ in files]
    chunk_counts = {id: 0 for id in docids}
    token_counts = {id: 0 for id in docids}
    es_bulk_size = 64

    def embedding(doc_id, cnts, batch_size=16):
        nonlocal embd_mdl, chunk_counts, token_counts
        vects = []
        for i in range(0, len(cnts), batch_size):
            vts, c = embd_mdl.encode(cnts[i: i + batch_size])
            vects.extend(vts.tolist())
            chunk_counts[doc_id] += len(cnts[i:i + batch_size])
            token_counts[doc_id] += c
        return vects

    _, tenant = TenantService.get_by_id(kb.tenant_id)
    llm_bdl = LLMBundle(kb.tenant_id, LLMType.CHAT, tenant.llm_id)
    for doc_id in docids:
        cks = [c for c in docs if c["doc_id"] == doc_id]

        if parser_ids[doc_id] != ParserType.PICTURE.value:
            mindmap = MindMapExtractor(llm_bdl)
            try:
                mind_map = json.dumps(mindmap([c["content_with_weight"] for c in docs if c["doc_id"] == doc_id]).output,
                                      ensure_ascii=False, indent=2)
                if len(mind_map) < 32: raise Exception("Few content: " + mind_map)
                cks.append({
                    "id": get_uuid(),
                    "doc_id": doc_id,
                    "kb_id": [kb.id],
                    "docnm_kwd": doc_nm[doc_id],
                    "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", doc_nm[doc_id])),
                    "content_ltks": "",
                    "content_with_weight": mind_map,
                    "knowledge_graph_kwd": "mind_map"
                })
            except Exception as e:
                stat_logger.error("Mind map generation error:", traceback.format_exc())

        vects = embedding(doc_id, [c["content_with_weight"] for c in cks])
        assert len(cks) == len(vects)
        for i, d in enumerate(cks):
            v = vects[i]
            d["q_%d_vec" % len(v)] = v
        for b in range(0, len(cks), es_bulk_size):
            ELASTICSEARCH.bulk(cks[b:b + es_bulk_size], idxnm)

        DocumentService.increment_chunk_num(
            doc_id, kb.id, token_counts[doc_id], chunk_counts[doc_id], 0)

    return [d["id"] for d,_ in files]