File size: 10,206 Bytes
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
6054f54
47ec63e
6054f54
47ec63e
6054f54
 
758538f
47ec63e
6054f54
 
 
 
47ec63e
6054f54
 
 
 
 
 
 
 
 
47ec63e
 
6054f54
 
758538f
6054f54
 
 
 
 
 
 
 
 
 
 
47ec63e
 
 
 
6054f54
47ec63e
6054f54
 
47ec63e
 
 
 
 
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ec63e
6054f54
 
 
47ec63e
6054f54
 
5720dea
91ede52
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
758538f
6054f54
 
 
 
 
 
 
 
 
47ec63e
6054f54
 
 
47ec63e
6054f54
 
 
 
 
47ec63e
6054f54
47ec63e
6054f54
 
 
47ec63e
 
 
6054f54
47ec63e
 
 
 
6054f54
 
47ec63e
6054f54
47ec63e
 
 
 
 
 
 
 
 
 
 
 
6054f54
 
 
47ec63e
 
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import logging
import itertools
import re
import time
from dataclasses import dataclass
from typing import Any, Callable

import networkx as nx

from graphrag.general.extractor import Extractor
from rag.nlp import is_english
import editdistance
from graphrag.entity_resolution_prompt import ENTITY_RESOLUTION_PROMPT
from rag.llm.chat_model import Base as CompletionLLM
from graphrag.utils import perform_variable_replacements

DEFAULT_RECORD_DELIMITER = "##"
DEFAULT_ENTITY_INDEX_DELIMITER = "<|>"
DEFAULT_RESOLUTION_RESULT_DELIMITER = "&&"


@dataclass
class EntityResolutionResult:
    """Entity resolution result class definition."""
    graph: nx.Graph
    removed_entities: list


class EntityResolution(Extractor):
    """Entity resolution class definition."""

    _resolution_prompt: str
    _output_formatter_prompt: str
    _record_delimiter_key: str
    _entity_index_delimiter_key: str
    _resolution_result_delimiter_key: str

    def __init__(
            self,
            llm_invoker: CompletionLLM,
            get_entity: Callable | None = None,
            set_entity: Callable | None = None,
            get_relation: Callable | None = None,
            set_relation: Callable | None = None
    ):
        super().__init__(llm_invoker, get_entity=get_entity, set_entity=set_entity, get_relation=get_relation, set_relation=set_relation)
        """Init method definition."""
        self._llm = llm_invoker
        self._resolution_prompt = ENTITY_RESOLUTION_PROMPT
        self._record_delimiter_key = "record_delimiter"
        self._entity_index_dilimiter_key = "entity_index_delimiter"
        self._resolution_result_delimiter_key = "resolution_result_delimiter"
        self._input_text_key = "input_text"

    def __call__(self, graph: nx.Graph, prompt_variables: dict[str, Any] | None = None) -> EntityResolutionResult:
        """Call method definition."""
        if prompt_variables is None:
            prompt_variables = {}

        # Wire defaults into the prompt variables
        prompt_variables = {
            **prompt_variables,
            self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key)
                                        or DEFAULT_RECORD_DELIMITER,
            self._entity_index_dilimiter_key: prompt_variables.get(self._entity_index_dilimiter_key)
                                              or DEFAULT_ENTITY_INDEX_DELIMITER,
            self._resolution_result_delimiter_key: prompt_variables.get(self._resolution_result_delimiter_key)
                                                   or DEFAULT_RESOLUTION_RESULT_DELIMITER,
        }

        nodes = graph.nodes
        entity_types = list(set(graph.nodes[node].get('entity_type', '-') for node in nodes))
        node_clusters = {entity_type: [] for entity_type in entity_types}

        for node in nodes:
            node_clusters[graph.nodes[node].get('entity_type', '-')].append(node)

        candidate_resolution = {entity_type: [] for entity_type in entity_types}
        for k, v in node_clusters.items():
            candidate_resolution[k] = [(a, b) for a, b in itertools.combinations(v, 2) if self.is_similarity(a, b)]

        gen_conf = {"temperature": 0.5}
        resolution_result = set()
        for candidate_resolution_i in candidate_resolution.items():
            if candidate_resolution_i[1]:
                try:
                    pair_txt = [
                        f'When determining whether two {candidate_resolution_i[0]}s are the same, you should only focus on critical properties and overlook noisy factors.\n']
                    for index, candidate in enumerate(candidate_resolution_i[1]):
                        pair_txt.append(
                            f'Question {index + 1}: name of{candidate_resolution_i[0]} A is {candidate[0]} ,name of{candidate_resolution_i[0]} B is {candidate[1]}')
                    sent = 'question above' if len(pair_txt) == 1 else f'above {len(pair_txt)} questions'
                    pair_txt.append(
                        f'\nUse domain knowledge of {candidate_resolution_i[0]}s to help understand the text and answer the {sent} in the format: For Question i, Yes, {candidate_resolution_i[0]} A and {candidate_resolution_i[0]} B are the same {candidate_resolution_i[0]}./No, {candidate_resolution_i[0]} A and {candidate_resolution_i[0]} B are different {candidate_resolution_i[0]}s. For Question i+1, (repeat the above procedures)')
                    pair_prompt = '\n'.join(pair_txt)

                    variables = {
                        **prompt_variables,
                        self._input_text_key: pair_prompt
                    }
                    text = perform_variable_replacements(self._resolution_prompt, variables=variables)

                    response = self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf)
                    result = self._process_results(len(candidate_resolution_i[1]), response,
                                                   prompt_variables.get(self._record_delimiter_key,
                                                                        DEFAULT_RECORD_DELIMITER),
                                                   prompt_variables.get(self._entity_index_dilimiter_key,
                                                                        DEFAULT_ENTITY_INDEX_DELIMITER),
                                                   prompt_variables.get(self._resolution_result_delimiter_key,
                                                                        DEFAULT_RESOLUTION_RESULT_DELIMITER))
                    for result_i in result:
                        resolution_result.add(candidate_resolution_i[1][result_i[0] - 1])
                except Exception:
                    logging.exception("error entity resolution")

        connect_graph = nx.Graph()
        removed_entities = []
        connect_graph.add_edges_from(resolution_result)
        for sub_connect_graph in nx.connected_components(connect_graph):
            sub_connect_graph = connect_graph.subgraph(sub_connect_graph)
            remove_nodes = list(sub_connect_graph.nodes)
            keep_node = remove_nodes.pop()
            self._merge_nodes(keep_node, self._get_entity_(remove_nodes))
            for remove_node in remove_nodes:
                removed_entities.append(remove_node)
                remove_node_neighbors = graph[remove_node]
                remove_node_neighbors = list(remove_node_neighbors)
                for remove_node_neighbor in remove_node_neighbors:
                    rel = self._get_relation_(remove_node, remove_node_neighbor)
                    if graph.has_edge(remove_node, remove_node_neighbor):
                        graph.remove_edge(remove_node, remove_node_neighbor)
                    if remove_node_neighbor == keep_node:
                        if graph.has_edge(keep_node, remove_node):
                            graph.remove_edge(keep_node, remove_node)
                        continue
                    if not rel:
                        continue
                    if graph.has_edge(keep_node, remove_node_neighbor):
                        self._merge_edges(keep_node, remove_node_neighbor, [rel])
                    else:
                        pair = sorted([keep_node, remove_node_neighbor])
                        graph.add_edge(pair[0], pair[1], weight=rel['weight'])
                        self._set_relation_(pair[0], pair[1],
                                           dict(
                                                src_id=pair[0],
                                                tgt_id=pair[1],
                                                weight=rel['weight'],
                                                description=rel['description'],
                                                keywords=[],
                                                source_id=rel.get("source_id", ""),
                                                metadata={"created_at": time.time()}
                                           ))
                graph.remove_node(remove_node)

        return EntityResolutionResult(
            graph=graph,
            removed_entities=removed_entities
        )

    def _process_results(
            self,
            records_length: int,
            results: str,
            record_delimiter: str,
            entity_index_delimiter: str,
            resolution_result_delimiter: str
    ) -> list:
        ans_list = []
        records = [r.strip() for r in results.split(record_delimiter)]
        for record in records:
            pattern_int = f"{re.escape(entity_index_delimiter)}(\d+){re.escape(entity_index_delimiter)}"
            match_int = re.search(pattern_int, record)
            res_int = int(str(match_int.group(1) if match_int else '0'))
            if res_int > records_length:
                continue

            pattern_bool = f"{re.escape(resolution_result_delimiter)}([a-zA-Z]+){re.escape(resolution_result_delimiter)}"
            match_bool = re.search(pattern_bool, record)
            res_bool = str(match_bool.group(1) if match_bool else '')

            if res_int and res_bool:
                if res_bool.lower() == 'yes':
                    ans_list.append((res_int, "yes"))

        return ans_list

    def is_similarity(self, a, b):
        if is_english(a) and is_english(b):
            if editdistance.eval(a, b) <= min(len(a), len(b)) // 2:
                return True

        if len(set(a) & set(b)) > 0:
            return True

        return False