File size: 10,005 Bytes
7dd2893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079197
8bc2fc9
f4456af
 
b691127
08bab63
cfd6ece
f4456af
b691127
 
 
f4456af
1d93b24
b691127
 
 
 
 
2d7e5db
b691127
 
 
f4456af
 
 
cff0ce8
f4456af
 
 
 
 
 
 
 
 
 
b691127
f4456af
 
 
08bab63
b691127
c9d78b3
b691127
 
08bab63
6c8312a
 
 
08bab63
 
 
 
f4456af
6c8312a
f4456af
b03b316
f4456af
b691127
 
 
f4456af
 
b691127
1b2aab6
58f507b
 
a49657b
 
 
b03b316
58f507b
 
 
1b2aab6
58f507b
b03b316
58f507b
 
6c8312a
 
bf46bd5
b03b316
 
 
b691127
 
 
 
 
 
 
 
f4456af
 
b691127
 
 
58f507b
f4456af
cfd6ece
d719333
f4456af
 
 
 
 
b691127
f4456af
1b2aab6
f4456af
 
8c682a7
f4456af
 
0404a52
 
8bc2fc9
f4456af
 
b691127
1b2aab6
b691127
 
 
f4456af
 
 
 
b691127
 
 
 
 
f4456af
 
1a2e406
 
 
f4456af
 
1a2e406
0404a52
 
1a2e406
6c8312a
1a2e406
 
 
 
b691127
f4456af
b691127
f4456af
1a2e406
f4456af
b691127
a49657b
 
f4456af
 
 
 
1a2e406
f4456af
 
b691127
1a2e406
 
b691127
 
 
f4456af
 
 
 
 
 
b691127
 
 
 
 
f4456af
b691127
f4456af
 
b691127
f4456af
c037a22
b691127
f4456af
c037a22
f4456af
 
328b4c9
1b2aab6
75f6aef
f4456af
 
 
 
 
 
 
c037a22
f4456af
 
 
75f6aef
f4456af
75f6aef
f4456af
 
 
79ada0b
f4456af
 
2bf6c61
 
6c8312a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import logging
import json
import re
from rag.utils.doc_store_conn import MatchTextExpr

from rag.nlp import rag_tokenizer, term_weight, synonym


class FulltextQueryer:
    def __init__(self):
        self.tw = term_weight.Dealer()
        self.syn = synonym.Dealer()
        self.query_fields = [
            "title_tks^10",
            "title_sm_tks^5",
            "important_kwd^30",
            "important_tks^20",
            "question_tks^20",
            "content_ltks^2",
            "content_sm_ltks",
        ]

    @staticmethod
    def subSpecialChar(line):
        return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|\+~\^])", r"\\\1", line).strip()

    @staticmethod
    def isChinese(line):
        arr = re.split(r"[ \t]+", line)
        if len(arr) <= 3:
            return True
        e = 0
        for t in arr:
            if not re.match(r"[a-zA-Z]+$", t):
                e += 1
        return e * 1.0 / len(arr) >= 0.7

    @staticmethod
    def rmWWW(txt):
        patts = [
            (
                r"是*(什么样的|哪家|一下|那家|请问|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀|谁|哪位|哪个)是*",
                "",
            ),
            (r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
            (
                r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down|of|to|or|and|if) ",
                " ")
        ]
        for r, p in patts:
            txt = re.sub(r, p, txt, flags=re.IGNORECASE)
        return txt

    def question(self, txt, tbl="qa", min_match: float = 0.6):
        txt = re.sub(
            r"[ :|\r\n\t,,。??/`!!&^%%()\[\]{}<>]+",
            " ",
            rag_tokenizer.tradi2simp(rag_tokenizer.strQ2B(txt.lower())),
        ).strip()
        txt = FulltextQueryer.rmWWW(txt)

        if not self.isChinese(txt):
            txt = FulltextQueryer.rmWWW(txt)
            tks = rag_tokenizer.tokenize(txt).split()
            keywords = [t for t in tks if t]
            tks_w = self.tw.weights(tks, preprocess=False)
            tks_w = [(re.sub(r"[ \\\"'^]", "", tk), w) for tk, w in tks_w]
            tks_w = [(re.sub(r"^[a-z0-9]$", "", tk), w) for tk, w in tks_w if tk]
            tks_w = [(re.sub(r"^[\+-]", "", tk), w) for tk, w in tks_w if tk]
            tks_w = [(tk.strip(), w) for tk, w in tks_w if tk.strip()]
            syns = []
            for tk, w in tks_w:
                syn = self.syn.lookup(tk)
                syn = rag_tokenizer.tokenize(" ".join(syn)).split()
                keywords.extend(syn)
                syn = ["\"{}\"^{:.4f}".format(s, w / 4.) for s in syn if s.strip()]
                syns.append(" ".join(syn))

            q = ["({}^{:.4f}".format(tk, w) + " {})".format(syn) for (tk, w), syn in zip(tks_w, syns) if
                 tk and not re.match(r"[.^+\(\)-]", tk)]
            for i in range(1, len(tks_w)):
                left, right = tks_w[i - 1][0].strip(), tks_w[i][0].strip()
                if not left or not right:
                    continue
                q.append(
                    '"%s %s"^%.4f'
                    % (
                        tks_w[i - 1][0],
                        tks_w[i][0],
                        max(tks_w[i - 1][1], tks_w[i][1]) * 2,
                    )
                )
            if not q:
                q.append(txt)
            query = " ".join(q)
            return MatchTextExpr(
                self.query_fields, query, 100
            ), keywords

        def need_fine_grained_tokenize(tk):
            if len(tk) < 3:
                return False
            if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
                return False
            return True

        txt = FulltextQueryer.rmWWW(txt)
        qs, keywords = [], []
        for tt in self.tw.split(txt)[:256]:  # .split():
            if not tt:
                continue
            keywords.append(tt)
            twts = self.tw.weights([tt])
            syns = self.syn.lookup(tt)
            if syns and len(keywords) < 32:
                keywords.extend(syns)
            logging.debug(json.dumps(twts, ensure_ascii=False))
            tms = []
            for tk, w in sorted(twts, key=lambda x: x[1] * -1):
                sm = (
                    rag_tokenizer.fine_grained_tokenize(tk).split()
                    if need_fine_grained_tokenize(tk)
                    else []
                )
                sm = [
                    re.sub(
                        r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
                        "",
                        m,
                    )
                    for m in sm
                ]
                sm = [FulltextQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
                sm = [m for m in sm if len(m) > 1]

                if len(keywords) < 32:
                    keywords.append(re.sub(r"[ \\\"']+", "", tk))
                    keywords.extend(sm)

                tk_syns = self.syn.lookup(tk)
                tk_syns = [FulltextQueryer.subSpecialChar(s) for s in tk_syns]
                if len(keywords) < 32:
                    keywords.extend([s for s in tk_syns if s])
                tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s]
                tk_syns = [f"\"{s}\"" if s.find(" ") > 0 else s for s in tk_syns]

                if len(keywords) >= 32:
                    break

                tk = FulltextQueryer.subSpecialChar(tk)
                if tk.find(" ") > 0:
                    tk = '"%s"' % tk
                if tk_syns:
                    tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns)
                if sm:
                    tk = f'{tk} OR "%s" OR ("%s"~2)^0.5' % (" ".join(sm), " ".join(sm))
                if tk.strip():
                    tms.append((tk, w))

            tms = " ".join([f"({t})^{w}" for t, w in tms])

            if len(twts) > 1:
                tms += ' ("%s"~2)^1.5' % rag_tokenizer.tokenize(tt)

            syns = " OR ".join(
                [
                    '"%s"'
                    % rag_tokenizer.tokenize(FulltextQueryer.subSpecialChar(s))
                    for s in syns
                ]
            )
            if syns:
                tms = f"({tms})^5 OR ({syns})^0.7"

            qs.append(tms)

        if qs:
            query = " OR ".join([f"({t})" for t in qs if t])
            return MatchTextExpr(
                self.query_fields, query, 100, {"minimum_should_match": min_match}
            ), keywords
        return None, keywords

    def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3, vtweight=0.7):
        from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
        import numpy as np

        sims = CosineSimilarity([avec], bvecs)
        tksim = self.token_similarity(atks, btkss)
        return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0]

    def token_similarity(self, atks, btkss):
        def toDict(tks):
            d = {}
            if isinstance(tks, str):
                tks = tks.split()
            for t, c in self.tw.weights(tks, preprocess=False):
                if t not in d:
                    d[t] = 0
                d[t] += c
            return d

        atks = toDict(atks)
        btkss = [toDict(tks) for tks in btkss]
        return [self.similarity(atks, btks) for btks in btkss]

    def similarity(self, qtwt, dtwt):
        if isinstance(dtwt, type("")):
            dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt), preprocess=False)}
        if isinstance(qtwt, type("")):
            qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt), preprocess=False)}
        s = 1e-9
        for k, v in qtwt.items():
            if k in dtwt:
                s += v  # * dtwt[k]
        q = 1e-9
        for k, v in qtwt.items():
            q += v
        return s / q

    def paragraph(self, content_tks: str, keywords: list = [], keywords_topn=30):
        if isinstance(content_tks, str):
            content_tks = [c.strip() for c in content_tks.strip() if c.strip()]
        tks_w = self.tw.weights(content_tks, preprocess=False)

        keywords = [f'"{k.strip()}"' for k in keywords]
        for tk, w in sorted(tks_w, key=lambda x: x[1] * -1)[:keywords_topn]:
            tk_syns = self.syn.lookup(tk)
            tk_syns = [FulltextQueryer.subSpecialChar(s) for s in tk_syns]
            tk_syns = [rag_tokenizer.fine_grained_tokenize(s) for s in tk_syns if s]
            tk_syns = [f"\"{s}\"" if s.find(" ") > 0 else s for s in tk_syns]
            tk = FulltextQueryer.subSpecialChar(tk)
            if tk.find(" ") > 0:
                tk = '"%s"' % tk
            if tk_syns:
                tk = f"({tk} OR (%s)^0.2)" % " ".join(tk_syns)
            if tk:
                keywords.append(f"{tk}^{w}")

        return MatchTextExpr(self.query_fields, " ".join(keywords), 100,
                             {"minimum_should_match": min(3, len(keywords) / 10)})