File size: 1,893 Bytes
9647155
 
 
 
91856d0
9647155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6a31a5
 
 
 
 
91856d0
9647155
 
d6a31a5
9647155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import sqlite3, json
from contextlib import closing

# change THIS
output_dir = 'faiss_qa_2023-08-20'
model_name = "multi-qa-MiniLM-L6-cos-v1"

punctuation = '!"#\'(),:;?[]^`}{'
punctuation2 = '-/&._~+*=@<>[]\\'
remove_punctuation = str.maketrans(punctuation2, ' ' * len(punctuation2), punctuation)

def load_questions(sqlite_filename):
  all_questions = []
  with closing(sqlite3.connect(sqlite_filename)) as db:
    db.row_factory = sqlite3.Row
    with closing(db.cursor()) as cursor:
      results = cursor.execute(
        "SELECT id, articleId, title, category, section, questions FROM articles WHERE articleType = ? AND doNotUse IS NULL OR doNotUse = 0",
        ('article',)
      ).fetchall()
      
      for res in results:
        section = res['section'].lower()
        title = res['title'].lower()
        if section == 'служебная информация':
          section = ''
          title = ''

        questions = json.loads(res['questions'])
        for q in questions:
          q['query'] = " ".join(section.split() + title.split() + q['question'].split()).translate(remove_punctuation).lower()
          q['articleId'] = res['articleId']
        all_questions += questions
        
  return all_questions

print("Loading questions from db...")
questions = load_questions("omnidesk-ai-chatgpt-questions.sqlite")

# print(questions[0])

from langchain.vectorstores import FAISS
from langchain.docstore.document import Document
from langchain.embeddings import SentenceTransformerEmbeddings

docs = [
  Document(page_content=q['query'], metadata={ 'answer': q['answer'], 'articleId': q['articleId'] })
  for q in questions
]

print(f"Loading embeddings model {model_name}...")
embeddings = SentenceTransformerEmbeddings(model_name=model_name)

print("embedding documents...")

db = FAISS.from_documents(docs, embeddings)
db.save_local(output_dir)

print('Saved!')