Spaces:
Sleeping
Sleeping
File size: 16,408 Bytes
05922fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import os
from time import time
from typing import *
import json
import numpy as np
import torch
from allennlp.common.util import JsonDict, sanitize
from allennlp.data import DatasetReader, Instance
from allennlp.data.data_loaders import SimpleDataLoader
from allennlp.data.samplers import MaxTokensBatchSampler
from allennlp.data.tokenizers import SpacyTokenizer
from allennlp.models import Model
from allennlp.nn import util as nn_util
from allennlp.predictors import Predictor
from concrete import (
MentionArgument, SituationMentionSet, SituationMention, TokenRefSequence,
EntityMention, EntityMentionSet, Entity, EntitySet, AnnotationMetadata, Communication
)
from concrete.util import CommunicationReader, AnalyticUUIDGeneratorFactory, CommunicationWriterZip
from concrete.validate import validate_communication
from ..data_reader import concrete_doc, concrete_doc_tokenized
from ..utils import Span, re_index_span, VIRTUAL_ROOT
class PredictionReturn(NamedTuple):
span: Union[Span, dict, Communication]
sentence: List[str]
meta: Dict[str, Any]
class ForceDecodingReturn(NamedTuple):
span: np.ndarray
label: List[str]
distribution: np.ndarray
@Predictor.register('span')
class SpanPredictor(Predictor):
@staticmethod
def format_convert(
sentence: Union[List[str], List[List[str]]],
prediction: Union[Span, List[Span]],
output_format: str
):
if output_format == 'span':
return prediction
elif output_format == 'json':
if isinstance(prediction, list):
return [SpanPredictor.format_convert(sent, pred, 'json') for sent, pred in zip(sentence, prediction)]
return prediction.to_json()
elif output_format == 'concrete':
if isinstance(prediction, Span):
sentence, prediction = [sentence], [prediction]
return concrete_doc_tokenized(sentence, prediction)
def predict_concrete(
self,
concrete_path: str,
output_path: Optional[str] = None,
max_tokens: int = 2048,
ontology_mapping: Optional[Dict[str, str]] = None,
):
os.makedirs(os.path.dirname(output_path), exist_ok=True)
writer = CommunicationWriterZip(output_path)
for comm, fn in CommunicationReader(concrete_path):
assert len(comm.sectionList) == 1
concrete_sentences = comm.sectionList[0].sentenceList
json_sentences = list()
for con_sent in concrete_sentences:
json_sentences.append(
[t.text for t in con_sent.tokenization.tokenList.tokenList]
)
predictions = self.predict_batch_sentences(json_sentences, max_tokens, ontology_mapping=ontology_mapping)
# Merge predictions into concrete
aug = AnalyticUUIDGeneratorFactory(comm).create()
situation_mention_set = SituationMentionSet(next(aug), AnnotationMetadata('Span Finder', time()), list())
comm.situationMentionSetList = [situation_mention_set]
situation_mention_set.mentionList = sm_list = list()
entity_mention_set = EntityMentionSet(next(aug), AnnotationMetadata('Span Finder', time()), list())
comm.entityMentionSetList = [entity_mention_set]
entity_mention_set.mentionList = em_list = list()
entity_set = EntitySet(
next(aug), AnnotationMetadata('Span Finder', time()), list(), None, entity_mention_set.uuid
)
comm.entitySetList = [entity_set]
em_dict = dict()
for con_sent, pred in zip(concrete_sentences, predictions):
for event in pred.span:
def raw_text_span(start_idx, end_idx, **_):
si_char = con_sent.tokenization.tokenList.tokenList[start_idx].textSpan.start
ei_char = con_sent.tokenization.tokenList.tokenList[end_idx].textSpan.ending
return comm.text[si_char:ei_char]
sm = SituationMention(
next(aug),
text=raw_text_span(event.start_idx, event.end_idx),
situationKind=event.label,
situationType='EVENT',
confidence=event.confidence,
argumentList=list(),
tokens=TokenRefSequence(
tokenIndexList=list(range(event.start_idx, event.end_idx+1)),
tokenizationId=con_sent.tokenization.uuid
)
)
for arg in event:
em = em_dict.get((arg.start_idx, arg.end_idx + 1))
if em is None:
em = EntityMention(
next(aug),
tokens=TokenRefSequence(
tokenIndexList=list(range(arg.start_idx, arg.end_idx+1)),
tokenizationId=con_sent.tokenization.uuid,
),
text=raw_text_span(arg.start_idx, arg.end_idx)
)
em_list.append(em)
entity_set.entityList.append(Entity(next(aug), id=em.text, mentionIdList=[em.uuid]))
em_dict[(arg.start_idx, arg.end_idx+1)] = em
sm.argumentList.append(MentionArgument(
role=arg.label,
entityMentionId=em.uuid,
confidence=arg.confidence
))
sm_list.append(sm)
validate_communication(comm)
writer.write(comm, fn)
writer.close()
def predict_sentence(
self,
sentence: Union[str, List[str]],
ontology_mapping: Optional[Dict[str, str]] = None,
output_format: str = 'span',
) -> PredictionReturn:
"""
Predict spans on a single sentence (no batch). If not tokenized, will tokenize it with SpacyTokenizer.
:param sentence: If tokenized, should be a list of tokens in string. If not, should be a string.
:param ontology_mapping:
:param output_format: span, json or concrete.
"""
prediction = self.predict_json(self._prepare_sentence(sentence))
prediction['prediction'] = self.format_convert(
prediction['sentence'],
Span.from_json(prediction['prediction']).map_ontology(ontology_mapping),
output_format
)
return PredictionReturn(prediction['prediction'], prediction['sentence'], prediction.get('meta', dict()))
def predict_batch_sentences(
self,
sentences: List[Union[List[str], str]],
max_tokens: int = 512,
ontology_mapping: Optional[Dict[str, str]] = None,
output_format: str = 'span',
) -> List[PredictionReturn]:
"""
Predict spans on a batch of sentences. If not tokenized, will tokenize it with SpacyTokenizer.
:param sentences: A list of sentences. Refer to `predict_sentence`.
:param max_tokens: Maximum tokens in a batch.
:param ontology_mapping: If not None, will try to map the output from one ontology to another.
If the predicted frame is not in the mapping, the prediction will be ignored.
:param output_format: span, json or concrete.
:return: A list of predictions.
"""
sentences = list(map(self._prepare_sentence, sentences))
for i_sent, sent in enumerate(sentences):
sent['meta'] = {"idx": i_sent}
instances = list(map(self._json_to_instance, sentences))
outputs = list()
for ins_indices in MaxTokensBatchSampler(max_tokens, ["tokens"], 0.0).get_batch_indices(instances):
batch_ins = list(
SimpleDataLoader([instances[ins_idx] for ins_idx in ins_indices], len(ins_indices), vocab=self.vocab)
)[0]
batch_inputs = nn_util.move_to_device(batch_ins, device=self.cuda_device)
batch_outputs = self._model(**batch_inputs)
for meta, prediction, inputs in zip(
batch_outputs['meta'], batch_outputs['prediction'], batch_outputs['inputs']
):
prediction.map_ontology(ontology_mapping)
prediction = self.format_convert(inputs['sentence'], prediction, output_format)
outputs.append(PredictionReturn(prediction, inputs['sentence'], {"input_idx": meta['idx']}))
outputs.sort(key=lambda x: x.meta['input_idx'])
return outputs
def predict_instance(self, instance: Instance) -> JsonDict:
outputs = self._model.forward_on_instance(instance)
outputs = sanitize(outputs)
return {
'prediction': outputs['prediction'],
'sentence': outputs['inputs']['sentence'],
'meta': outputs.get('meta', {})
}
def __init__(
self,
model: Model,
dataset_reader: DatasetReader,
frozen: bool = True,
):
super(SpanPredictor, self).__init__(model=model, dataset_reader=dataset_reader, frozen=frozen)
self.spacy_tokenizer = SpacyTokenizer(language='en_core_web_sm')
def economize(
self,
max_decoding_spans: Optional[int] = None,
max_recursion_depth: Optional[int] = None,
):
if max_decoding_spans:
self._model._max_decoding_spans = max_decoding_spans
if max_recursion_depth:
self._model._max_recursion_depth = max_recursion_depth
def _json_to_instance(self, json_dict: JsonDict) -> Instance:
return self._dataset_reader.text_to_instance(**json_dict)
@staticmethod
def to_nested(prediction: List[dict]):
first_layer, idx2children = list(), dict()
for idx, pred in enumerate(prediction):
children = list()
pred['children'] = idx2children[idx+1] = children
if pred['parent'] == 0:
first_layer.append(pred)
else:
idx2children[pred['parent']].append(pred)
del pred['parent']
return first_layer
def _prepare_sentence(self, sentence: Union[str, List[str]]) -> Dict[str, List[str]]:
if isinstance(sentence, str):
while ' ' in sentence:
sentence = sentence.replace(' ', ' ')
sentence = sentence.replace(chr(65533), '')
if sentence == '':
sentence = [""]
sentence = list(map(str, self.spacy_tokenizer.tokenize(sentence)))
return {"tokens": sentence}
@staticmethod
def json_to_concrete(
predictions: List[dict],
):
sentences = list()
for pred in predictions:
tokenization, event = list(), list()
sent = {'text': ' '.join(pred['inputs']), 'tokenization': tokenization, 'event': event}
sentences.append(sent)
start_idx = 0
for token in pred['inputs']:
tokenization.append((start_idx, len(token)-1+start_idx))
start_idx += len(token) + 1
for pred_event in pred['prediction']:
arg_list = list()
one_event = {'argument': arg_list}
event.append(one_event)
for key in ['start_idx', 'end_idx', 'label']:
one_event[key] = pred_event[key]
for pred_arg in pred_event['children']:
arg_list.append({key: pred_arg[key] for key in ['start_idx', 'end_idx', 'label']})
concrete_comm = concrete_doc(sentences)
return concrete_comm
def force_decode(
self,
sentence: List[str],
parent_span: Tuple[int, int] = (-1, -1),
parent_label: str = VIRTUAL_ROOT,
child_spans: Optional[List[Tuple[int, int]]] = None,
) -> ForceDecodingReturn:
"""
Force decoding. There are 2 modes:
1. Given parent span and its label, find all it children (direct children, not including other descendents)
and type them.
2. Given parent span, parent label, and children spans, type all children.
:param sentence: Tokens.
:param parent_span: [start_idx, end_idx], both inclusive.
:param parent_label: Parent label in string.
:param child_spans: Optional. If provided, will turn to mode 2; else mode 1.
:return:
- span: children spans.
- label: most probable labels of children.
- distribution: distribution over children labels.
"""
instance = self._dataset_reader.text_to_instance(self._prepare_sentence(sentence)['tokens'])
model_input = nn_util.move_to_device(
list(SimpleDataLoader([instance], 1, vocab=self.vocab))[0], device=self.cuda_device
)
offsets = instance.fields['raw_inputs'].metadata['offsets']
with torch.no_grad():
tokens = model_input['tokens']
parent_span = re_index_span(parent_span, offsets)
if parent_span[1] >= self._dataset_reader.max_length:
return ForceDecodingReturn(
np.zeros([0, 2], dtype=np.int),
[],
np.zeros([0, self.vocab.get_vocab_size('span_label')], dtype=np.float64)
)
if child_spans is not None:
token_vec = self._model.word_embedding(tokens)
child_pieces = [re_index_span(bdr, offsets) for bdr in child_spans]
child_pieces = list(filter(lambda x: x[1] < self._dataset_reader.max_length-1, child_pieces))
span_tensor = torch.tensor(
[parent_span] + child_pieces, dtype=torch.int64, device=self.device
).unsqueeze(0)
parent_indices = span_tensor.new_zeros(span_tensor.shape[0:2])
span_labels = parent_indices.new_full(
parent_indices.shape, self._model.vocab.get_token_index(parent_label, 'span_label')
)
span_vec = self._model._span_extractor(token_vec, span_tensor)
typing_out = self._model._span_typing(span_vec, parent_indices, span_labels)
distribution = typing_out['distribution'][0, 1:].cpu().numpy()
boundary = np.array(child_spans)
else:
parent_label_tensor = torch.tensor(
[self._model.vocab.get_token_index(parent_label, 'span_label')], device=self.device
)
parent_boundary_tensor = torch.tensor([parent_span], device=self.device)
boundary, _, num_children, distribution = self._model.one_step_prediction(
tokens, parent_boundary_tensor, parent_label_tensor
)
boundary, distribution = boundary[0].cpu().tolist(), distribution[0].cpu().numpy()
boundary = np.array([re_index_span(bdr, offsets, True) for bdr in boundary])
labels = [
self.vocab.get_token_from_index(label_idx, 'span_label') for label_idx in distribution.argmax(1)
]
return ForceDecodingReturn(boundary, labels, distribution)
@property
def vocab(self):
return self._model.vocab
@property
def device(self):
return self.cuda_device if self.cuda_device > -1 else 'cpu'
@staticmethod
def read_ontology_mapping(file_path: str):
"""
Read the ontology mapping file. The file format can be read in docs.
"""
if file_path is None:
return None
if file_path.endswith('.json'):
return json.load(open(file_path))
mapping = dict()
for line in open(file_path).readlines():
parent_label, original_label, new_label = line.replace('\n', '').split('\t')
if parent_label == '*':
mapping[original_label] = new_label
else:
mapping[(parent_label, original_label)] = new_label
return mapping
|