File size: 4,060 Bytes
2890e34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
local env = import "../env.jsonnet";

#local dataset_path = env.str("DATA_PATH", "data/framenet/full");
local dataset_path = "/home/p289731/cloned/lome/preproc/evalita_jsonl";
local ontology_path = "data/framenet/ontology.tsv";

local debug = false;

# reader
local pretrained_model = "/data/p289731/cloned/lome-models/models/xlm-roberta-framenet/";
local smoothing_factor = env.json("SMOOTHING", "0.1");

# model
local label_dim = env.json("LABEL_DIM", "64");
local dropout = env.json("DROPOUT", "0.2");
local bio_dim = env.json("BIO_DIM", "512");
local bio_layers = env.json("BIO_LAYER", "2");
local span_typing_dims = env.json("TYPING_DIMS", "[256, 256]");
local typing_loss_factor = env.json("LOSS_FACTOR", "8.0");

# loader
local exemplar_ratio = env.json("EXEMPLAR_RATIO", "0.05");
local max_training_tokens = 512;
local max_inference_tokens = 1024;

# training
local layer_fix = env.json("LAYER_FIX", "0");
local grad_acc = env.json("GRAD_ACC", "1");
#local cuda_devices  = env.json("CUDA_DEVICES", "[-1]");
local cuda_devices = [0];
local patience = 32;

{
    dataset_reader: {
        type: "semantic_role_labeling",
        debug: debug,
        pretrained_model: pretrained_model,
        ignore_label: false,
        [ if debug then "max_instances" ]: 128,
        event_smoothing_factor: smoothing_factor,
        arg_smoothing_factor: smoothing_factor,
    },
    train_data_path: dataset_path + "/evalita_train.jsonl",
    validation_data_path: dataset_path + "/evalita_dev.jsonl",
    test_data_path: dataset_path + "/evalita_test.jsonl",

    datasets_for_vocab_creation: ["train"],

    data_loader: {
        batch_sampler: {
            type: "mix_sampler",
            max_tokens: max_training_tokens,
            sorting_keys: ['tokens'],
            sampling_ratios: {
                'exemplar': 1.0,
                'full text': 0.0,
            }
        }
    },

    validation_data_loader: {
        batch_sampler: {
            type: "max_tokens_sampler",
            max_tokens: max_inference_tokens,
            sorting_keys: ['tokens']
        }
    },

    model: {
        type: "span",
        word_embedding: {
            token_embedders: {
                "pieces": {
                    type: "pretrained_transformer",
                    model_name: pretrained_model,
                }
            },
        },
        span_extractor: {
            type: 'combo',
            sub_extractors: [
                {
                    type: 'self_attentive',
                },
                {
                    type: 'bidirectional_endpoint',
                }
            ]
        },
        span_finder: {
            type: "bio",
            bio_encoder: {
                type: "lstm",
                hidden_size: bio_dim,
                num_layers: bio_layers,
                bidirectional: true,
                dropout: dropout,
            },
            no_label: false,
        },
        span_typing: {
            type: 'mlp',
            hidden_dims: span_typing_dims,
        },
        metrics: [{type: "srl"}],

        typing_loss_factor: typing_loss_factor,
        ontology_path: null,
        label_dim: label_dim,
        max_decoding_spans: 128,
        max_recursion_depth: 2,
        debug: debug,
    },

    trainer: {
        num_epochs: 128,
        patience: patience,
        [if std.length(cuda_devices) == 1 then "cuda_device"]: cuda_devices[0],
        validation_metric: "+em_f",
        grad_norm: 10,
        grad_clipping: 10,
        num_gradient_accumulation_steps: grad_acc,
        optimizer: {
            type: "transformer",
            base: {
                type: "adam",
                lr: 1e-3,
            },
            embeddings_lr: 0.0,
            encoder_lr: 1e-5,
            pooler_lr: 1e-5,
            layer_fix: layer_fix,
        }
    },

    cuda_devices:: cuda_devices,
    [if std.length(cuda_devices) > 1 then "distributed"]: {
        "cuda_devices": cuda_devices
    },
    [if std.length(cuda_devices) == 1 then "evaluate_on_test"]: true
}