Spaces:
Build error
Build error
File size: 4,060 Bytes
2890e34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
local env = import "../env.jsonnet";
#local dataset_path = env.str("DATA_PATH", "data/framenet/full");
local dataset_path = "/home/p289731/cloned/lome/preproc/evalita_jsonl";
local ontology_path = "data/framenet/ontology.tsv";
local debug = false;
# reader
local pretrained_model = "/data/p289731/cloned/lome-models/models/xlm-roberta-framenet/";
local smoothing_factor = env.json("SMOOTHING", "0.1");
# model
local label_dim = env.json("LABEL_DIM", "64");
local dropout = env.json("DROPOUT", "0.2");
local bio_dim = env.json("BIO_DIM", "512");
local bio_layers = env.json("BIO_LAYER", "2");
local span_typing_dims = env.json("TYPING_DIMS", "[256, 256]");
local typing_loss_factor = env.json("LOSS_FACTOR", "8.0");
# loader
local exemplar_ratio = env.json("EXEMPLAR_RATIO", "0.05");
local max_training_tokens = 512;
local max_inference_tokens = 1024;
# training
local layer_fix = env.json("LAYER_FIX", "0");
local grad_acc = env.json("GRAD_ACC", "1");
#local cuda_devices = env.json("CUDA_DEVICES", "[-1]");
local cuda_devices = [0];
local patience = 32;
{
dataset_reader: {
type: "semantic_role_labeling",
debug: debug,
pretrained_model: pretrained_model,
ignore_label: false,
[ if debug then "max_instances" ]: 128,
event_smoothing_factor: smoothing_factor,
arg_smoothing_factor: smoothing_factor,
},
train_data_path: dataset_path + "/evalita_train.jsonl",
validation_data_path: dataset_path + "/evalita_dev.jsonl",
test_data_path: dataset_path + "/evalita_test.jsonl",
datasets_for_vocab_creation: ["train"],
data_loader: {
batch_sampler: {
type: "mix_sampler",
max_tokens: max_training_tokens,
sorting_keys: ['tokens'],
sampling_ratios: {
'exemplar': 1.0,
'full text': 0.0,
}
}
},
validation_data_loader: {
batch_sampler: {
type: "max_tokens_sampler",
max_tokens: max_inference_tokens,
sorting_keys: ['tokens']
}
},
model: {
type: "span",
word_embedding: {
token_embedders: {
"pieces": {
type: "pretrained_transformer",
model_name: pretrained_model,
}
},
},
span_extractor: {
type: 'combo',
sub_extractors: [
{
type: 'self_attentive',
},
{
type: 'bidirectional_endpoint',
}
]
},
span_finder: {
type: "bio",
bio_encoder: {
type: "lstm",
hidden_size: bio_dim,
num_layers: bio_layers,
bidirectional: true,
dropout: dropout,
},
no_label: false,
},
span_typing: {
type: 'mlp',
hidden_dims: span_typing_dims,
},
metrics: [{type: "srl"}],
typing_loss_factor: typing_loss_factor,
ontology_path: null,
label_dim: label_dim,
max_decoding_spans: 128,
max_recursion_depth: 2,
debug: debug,
},
trainer: {
num_epochs: 128,
patience: patience,
[if std.length(cuda_devices) == 1 then "cuda_device"]: cuda_devices[0],
validation_metric: "+em_f",
grad_norm: 10,
grad_clipping: 10,
num_gradient_accumulation_steps: grad_acc,
optimizer: {
type: "transformer",
base: {
type: "adam",
lr: 1e-3,
},
embeddings_lr: 0.0,
encoder_lr: 1e-5,
pooler_lr: 1e-5,
layer_fix: layer_fix,
}
},
cuda_devices:: cuda_devices,
[if std.length(cuda_devices) > 1 then "distributed"]: {
"cuda_devices": cuda_devices
},
[if std.length(cuda_devices) == 1 then "evaluate_on_test"]: true
}
|