File size: 12,496 Bytes
b11ac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""
Learn to classify the manually annotated CDA attributes (frames, 'riferimento', orientation)
"""

import sys

import torch

from allennlp.data.vocabulary import Vocabulary
from allennlp.data import DatasetReader, TokenIndexer, Instance, Token
from allennlp.data.fields import TextField, LabelField
from allennlp.data.token_indexers.pretrained_transformer_indexer import (
    PretrainedTransformerIndexer,
)
from allennlp.data.tokenizers.pretrained_transformer_tokenizer import (
    PretrainedTransformerTokenizer,
)
from allennlp.models import BasicClassifier
from allennlp.modules.text_field_embedders.basic_text_field_embedder import (
    BasicTextFieldEmbedder,
)
from allennlp.modules.token_embedders.pretrained_transformer_embedder import (
    PretrainedTransformerEmbedder,
)
from allennlp.modules.seq2vec_encoders.bert_pooler import BertPooler
from allennlp.training.checkpointer import Checkpointer
from allennlp.training.gradient_descent_trainer import GradientDescentTrainer
from allennlp.data.data_loaders.simple_data_loader import SimpleDataLoader
from allennlp.training.optimizers import AdamOptimizer
from allennlp.predictors.text_classifier import TextClassifierPredictor

from sklearn.svm import SVC
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics import precision_recall_fscore_support
from sklearn.tree import DecisionTreeClassifier
from sklearn.dummy import DummyClassifier

import pandas as pd
import numpy as np
import spacy

import json
import os
from typing import Dict, Iterable


class MigrationReader(DatasetReader):
    def __init__(self, token_indexers, tokenizer):
        self.token_indexers = token_indexers
        self.tokenizer = tokenizer

    def text_to_instance(self, sentence, label=None) -> Instance:
        text_field = TextField(self.tokenizer.tokenize(sentence), self.token_indexers)
        fields = {"tokens": text_field}
        if label is not None:
            label_field = LabelField(label)
            fields["label"] = label_field
        return Instance(fields)


    def read_instances(
        self, text: pd.Series, labels: pd.Series
    ) -> Iterable[Instance]:
        for sentence, label in zip(text, labels):
            instance = self.text_to_instance(sentence, label)
            yield instance


def train(attrib, use_gpu=False):
    assert attrib in ["cda_frame", "riferimento", "orientation", "fake"]

    # load data
    print("Loading data...")
    x_train, y_train, x_dev, y_dev = load_data(attrib)
    print(f"\t\ttrain size: {len(x_train)}")
    print(f"\t\tdev size: {len(x_dev)}")

    # try different setups
    print("Running training setups...")
    scores = []
    setups = [
        # defaults: remove_punct=True, lowercase=True, lemmatize=False, remove_stop=False
        # ({}, {}, {"type": "svm", "options": {"kernel": "linear", "C": 1.0}}),
        (
            {},
            {},
            {
                "type": "bert",
                "options": {"transformer": "Musixmatch/umberto-commoncrawl-cased-v1"},
            },
        ),
        # ({"lemmatize": True, "remove_stop": True}, {}, {"type": "svm", "options": {"kernel": "linear", "C": 0.8}}),
        # ({"lemmatize": True, "remove_stop": True}, {"embed": False}, {"type": "svm", "options": {"kernel": "linear", "C": 0.8}}),
        # ({"lemmatize": True, "remove_stop": True}, {"embed": False}, {"type": "dummy", "options": {}}),
        # ({"lemmatize": True, "remove_stop": True}, {"embed": False}, {"type": "tree", "options": {}}),
        # ({"lemmatize": True, "remove_stop": True}, {}, SVC(kernel='linear')),
        # ({"lemmatize": True, "remove_stop": True}, {"min_freq": 5}, SVC(kernel='linear')),
        # ({"lemmatize": True, "remove_stop": True}, {"min_freq": 5, "max_freq": .70}, SVC(kernel='linear')),
        # ({"lemmatize": True, "remove_stop": True}, {}, SVC(kernel='linear', C=0.6)),
        # ({"lemmatize": True, "remove_stop": True}, {}, SVC(kernel='linear', C=0.7)),
        # ({"lemmatize": True, "remove_stop": True}, {}, SVC(kernel='linear', C=0.8)),
        # ({"lemmatize": True, "remove_stop": True}, {"ngram_range": (1,2)}, SVC(kernel='linear', C=0.8)),
        # ({"lemmatize": True, "remove_stop": True}, {}, SVC(kernel="rbf")),
    ]

    nlp = spacy.load("it_core_news_md")

    for s_idx, (text_options, vect_options, model_info) in enumerate(setups):

        if model_info["type"] == "bert":
            print("\t\tPreparing BERT model...")

            # cuda_device = 0 if torch.cuda.is_available() else -1
            cuda_device = None if use_gpu and torch.cuda.is_available() else -1

            transformer = model_info["options"]["transformer"]
            token_indexers = {"tokens": PretrainedTransformerIndexer(transformer)}
            tokenizer = PretrainedTransformerTokenizer(transformer)

            reader = MigrationReader(token_indexers, tokenizer)
            train_instances = list(
                reader.read_instances(x_train, y_train)
            )
            dev_instances = list(
                reader.read_instances(x_dev, y_dev)
            )
            vocab = Vocabulary.from_instances(train_instances + dev_instances)
            print(vocab.get_vocab_size("tags"))

            embedder = BasicTextFieldEmbedder(
                {"tokens": PretrainedTransformerEmbedder(transformer)}
            )
            seq2vec = BertPooler(transformer)
            model = BasicClassifier(vocab, embedder, seq2vec, namespace="tags")        
            if use_gpu:
                model = model.cuda(cuda_device)

            checkpoint_dir = f"/scratch/p289731/cda_classify/model_{attrib}/checkpoints/"
            serialization_dir = f"/scratch/p289731/cda_classify/model_{attrib}/serialize/"
            os.makedirs(checkpoint_dir)
            os.makedirs(serialization_dir)
            checkpointer = Checkpointer(checkpoint_dir)
            optimizer = AdamOptimizer(
                [(n, p) for n, p in model.named_parameters() if p.requires_grad],
                lr=1e-6
            )
            train_loader = SimpleDataLoader(train_instances, batch_size=8, shuffle=True)
            dev_loader = SimpleDataLoader(dev_instances, batch_size=8, shuffle=False)
            train_loader.index_with(vocab)
            dev_loader.index_with(vocab)

            print("\t\tTraining BERT model")
            trainer = GradientDescentTrainer(
                model,
                optimizer,
                train_loader,
                validation_data_loader=dev_loader,
                patience=32,
                checkpointer=checkpointer,
                cuda_device=cuda_device,
                serialization_dir=serialization_dir
            )
            trainer.train()

            print("\t\tProducing predictions...")
            predictor = TextClassifierPredictor(model, reader)
            predictions = [predictor.predict(sentence) for sentence in x_dev] 
            y_dev_pred = [p["label"] for p in predictions]
            class_labels = list(vocab.get_token_to_index_vocabulary("labels").keys())

        elif model_info["type"] in ["svm", "tree", "dummy"]:
            # extract features
            print("\t\tExtracting features...")
            x_train_fts, vectorizer = extract_features(
                x_train, nlp, text_options, **vect_options
            )
            x_dev_fts, _ = extract_features(
                x_dev, nlp, text_options, **vect_options, vectorizer=vectorizer
            )

            if not vect_options["embed"]:
                print(f"\t\t\tnum features: {len(vectorizer.vocabulary_)}")
            else:
                assert model_info["type"] != "tree", "Decision tree does not support embedding input"

            print("\t\tTraining the model...")
            if model_info["type"] == "svm":
                model = SVC(**model_info["options"])
            elif model_info["type"] == "tree":
                model = DecisionTreeClassifier()
            else:
                model = DummyClassifier()
            model.fit(x_train_fts, y_train)

            # evaluate on dev
            print("\t\tValidating the model...")
            y_dev_pred = model.predict(x_dev_fts)
            class_labels = model.classes_

        p_micro, r_micro, f_micro, _ = precision_recall_fscore_support(
            y_dev, y_dev_pred, average="micro"
        )
        p_classes, r_classes, f_classes, _ = precision_recall_fscore_support(
            y_dev, y_dev_pred, average=None, labels=class_labels, zero_division=0
        )
        print(
            f"\t\t\tOverall scores (micro-averaged):\tP={p_micro}\tR={r_micro}\tF={f_micro}"
        )

        scores.append(
            {
                "micro": {"p": p_micro, "r": r_micro, "f": f_micro},
                "classes": {
                    "p": list(zip(class_labels, p_classes)),
                    "r": list(zip(class_labels, r_classes)),
                    "f": list(zip(class_labels, f_classes)),
                },
            }
        )

        prediction_df = pd.DataFrame(
            zip(x_dev, y_dev, y_dev_pred), columns=["headline", "gold", "prediction"]
        )
        prediction_df.to_csv(
            f"output/migration/cda_classify/predictions_{attrib}_{s_idx:02}.csv"
        )

    with open(
        f"output/migration/cda_classify/scores_{attrib}.json", "w", encoding="utf-8"
    ) as f_scores:
        json.dump(scores, f_scores, indent=4)


def load_data(attrib):
    train_data = pd.read_csv("output/migration/preprocess/annotations_train.csv")
    dev_data = pd.read_csv("output/migration/preprocess/annotations_dev.csv")

    x_train = train_data["Titolo"]
    x_dev = dev_data["Titolo"]

    if attrib == "cda_frame":
        y_train = train_data["frame"]
        y_dev = dev_data["frame"]
    elif attrib == "riferimento":
        y_train = train_data["riferimento"]
        y_dev = dev_data["riferimento"]
    elif attrib == "orientation":
        y_train = train_data["orientation"]
        y_dev = dev_data["orientation"]

    # fake task to test setup
    else:
        y_train = pd.Series(["true" if "rifugiato" in exa else "false" for exa in x_train])
        y_dev = pd.Series(["true" if "rifugiato" in exa else "false" for exa in x_dev])

    return x_train, y_train, x_dev, y_dev


def extract_features(
    headlines,
    nlp,
    text_options,
    embed=False,
    min_freq=1,
    max_freq=1.0,
    ngram_range=(1, 1),
    vectorizer=None,
):

    if embed:
        vectorized = np.array(
            [vec for vec in process_text(headlines, nlp, embed=True, **text_options)]
        )
    else:
        tokenized = [
            " ".join(sent) for sent in process_text(headlines, nlp, **text_options)
        ]
        if vectorizer is None:
            vectorizer = CountVectorizer(
                lowercase=False,
                analyzer="word",
                min_df=min_freq,
                max_df=max_freq,
                ngram_range=ngram_range,
            )
            vectorized = vectorizer.fit_transform(tokenized)
        else:
            vectorized = vectorizer.transform(tokenized)
    return vectorized, vectorizer


def process_text(
    headlines,
    nlp,
    embed=False,
    remove_punct=True,
    lowercase=True,
    lemmatize=False,
    remove_stop=False,
):
    for sent in headlines:
        doc = nlp(sent)
        tokens = (
            t
            for t in doc
            if (not remove_stop or not t.is_stop)
            and (not remove_punct or t.pos_ not in ["PUNCT", "SYM", "X"])
        )
        if embed:
            if lemmatize:
                tokens = (t.vocab[t.lemma].vector for t in tokens)
            else:
                tokens = (t.vector for t in tokens if t.has_vector)
        else:
            if lemmatize:
                tokens = (t.lemma_ for t in tokens)
            else:
                tokens = (t.text for t in tokens)

            if lowercase:
                tokens = (t.lower() for t in tokens)

        if embed:
            token_arr = np.array([t for t in tokens])
            if len(token_arr) == 0:
                yield np.random.rand(300)
            else:
                yield np.mean(token_arr, axis=0)
        else:
            yield list(tokens)


if __name__ == "__main__":
    use_gpu = True if sys.argv[1] == "gpu" else False
    # train(attrib="fake", use_gpu=use_gpu)
    train(attrib="cda_frame", use_gpu=use_gpu)
    # train(attrib="riferimento")
    # train(attrib="orientation")