File size: 5,978 Bytes
b11ac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from itertools import product

import pandas as pd
import numpy as np
from scipy.spatial.distance import cosine

from nltk.corpus import framenet as fn

from sociofillmore.common.analyze_text import read_frames_of_interest


COSINE_THRESH = [0.1, 0.2, 0.3, 0.4, 0.5]


PREDICTION_FILES = {
    "evalita-dev": {
        "stupid-svm": "../stupid-svm-frameid/evalita_predictions.csv",
        "lome-en": "misc/frame_prediction_output_lome-en_dev.csv",
        "lome-it": "misc/frame_prediction_output_lome-it-best_dev.csv",
    },
    "evalita-test": {
        "stupid-svm": "../stupid-svm-frameid/evalita_predictions_test.csv",
        "lome-en": "misc/frame_prediction_output_lome-en_test.csv",
        "lome-it": "misc/frame_prediction_output_lome-it-best_test.csv",
    },
    "rai_femicides": {
        "stupid-svm": "../stupid-svm-frameid/rai_predictions.csv",
        "lome-en": "misc/frame_prediction_output_lome-en_rai.csv",
        "lome-it": "misc/frame_prediction_output_lome-it-best_rai.csv",
    },
}


def load_embeddings(embedding_file):
    frame_vocab = []
    word_vocab = []
    vectors = []

    with open(embedding_file, encoding="utf-8") as f:
        for line in f:
            columns = line.split()
            frame = columns[0]
            words = tuple(columns[1].split("+"))
            vector = np.array([float(i) for i in columns[2:]])

            frame_vocab.append(frame)
            word_vocab.append(words)
            vectors.append(vector)

    frames_to_idxs = {}
    for i, frame in enumerate(frame_vocab):
        frames_to_idxs[frame] = i

    return np.array(vectors, dtype=np.float64), frames_to_idxs


def femicide_frame_distances(embeddings, frame_to_idx):
    femicide_frames = read_frames_of_interest("femicides/rai")
    print("Cosines: ")
    for fr1, fr2 in product(femicide_frames, femicide_frames):
        dist = cosine(embeddings[frame_to_idx[fr1]], embeddings[frame_to_idx[fr2]])
        print(f"\t{fr1}-{fr2}: {dist:.4f}")


def embedding_scores(predictions, embeddings, frame_to_idx):
    correct = 0
    close_calls = {threshold: 0 for threshold in COSINE_THRESH}
    total_dist = 0.0

    for _, row in predictions.iterrows():
        predicted = row["frame_pred"]
        gold = row["frame_gold"]
        dist = cosine(
            embeddings[frame_to_idx[predicted]], embeddings[frame_to_idx[gold]]
        )
        if predicted == gold:
            correct += 1
        else:
            for threshold in COSINE_THRESH:
                if dist < threshold:
                    close_calls[threshold] += 1
        total_dist += dist

    print("#correct: ", correct / len(predictions))
    print("#close calls: ")
    for threshold in COSINE_THRESH:
        print("\t", threshold, (close_calls[threshold]) / len(predictions))
    print("#correct or close: ")
    for threshold in COSINE_THRESH:
        print("\t", threshold, (correct + close_calls[threshold]) / len(predictions))
    print("avg cosine dist: ", total_dist / len(predictions))


def generalization_exp(predictions, evalita_train_counts, fn_frames, femicide_frames):

    all_frames = predictions
    ifn_frames = predictions[
        predictions["frame_gold"].isin(evalita_train_counts["label"])
    ]
    bfn_frames = predictions[predictions["frame_gold"].isin(fn_frames)]
    rai_frames = predictions[predictions["frame_gold"].isin(femicide_frames)]


    print("LEN (ALL/IFN/BFN/RAI:)")
    print(
        "\t".join(
            [
                str(len(preds))
                for preds in [all_frames, ifn_frames, bfn_frames, rai_frames]
            ]
        )
    )

    print("ACC (ALL/IFN/BFN/RAI:)")
    print(
        "\t".join(
            [
                str(len(preds[preds["frame_gold"] == preds["frame_pred"]]) / len(preds))
                for preds in [all_frames, ifn_frames, bfn_frames, rai_frames]
            ]
        )
    )


def main():

    evalita_train_counts = pd.read_csv(
        "output/femicides/compare_lome_models/evalita_trainset_counts.csv"
    )

    fn_frames = {fr.name for fr in fn.frames()}
    femicide_frames = read_frames_of_interest("femicides/rai")
    evalita_train_counts = pd.read_csv(
        "output/femicides/compare_lome_models/evalita_trainset_counts.csv"
    )

    for dataset in PREDICTION_FILES:
        print(f"==={dataset}===")
        for model, predictions_file in PREDICTION_FILES[dataset].items():

            print(f"---{model}---")

            predictions = pd.read_csv(predictions_file, index_col=0)
            print("Total predictions:", len(predictions))

            # predictions_with_fn_frames = predictions[
            #     predictions["frame_gold"].isin(fn_frames)
            #     & predictions["frame_pred"].isin(fn_frames)
            # ]
            # print("Predictions with FN frames: ", len(predictions_with_fn_frames))

            # errors = predictions[predictions["frame_gold"] != predictions["frame_pred"]]
            # print("Total errors: ", len(errors))

            # errors_with_fn_frames = errors[
            #     errors["frame_gold"].isin(fn_frames) & errors["frame_pred"].isin(fn_frames)
            # ]
            # print("Errors with FN frames: ", len(errors_with_fn_frames))

            # print("Loading embeddings...")
            # embeddings, frame_to_idx = load_embeddings(
            #     "../bert-for-framenet/data/embeddings/bag_of_lu_embeddings.txt"
            # )
            # # femicide_frame_distances(embeddings, frame_to_idx)
            # embedding_scores(predictions_with_fn_frames, embeddings, frame_to_idx)

            if dataset == "rai_femicides":
                predictions = predictions[predictions["frame_gold"].isin(femicide_frames)]


            femicide_frames = read_frames_of_interest("femicides/rai")
            generalization_exp(
                predictions, evalita_train_counts, fn_frames, femicide_frames
            )


            print()
        print()


if __name__ == "__main__":
    main()