File size: 22,761 Bytes
b308128
937be2f
cd41e3a
cd1760d
7f877a9
2baca0d
738a5f6
ce6518f
738a5f6
94f53fc
224700e
ac62039
94f53fc
 
262a949
ac62039
04fc021
d6deec7
 
 
58e0da5
8b150b6
 
 
 
8217779
8b150b6
 
58e0da5
8b150b6
 
58e0da5
8b150b6
 
58e0da5
8b150b6
2d7bc30
8b150b6
2d7bc30
ce6518f
2d7bc30
8b150b6
d378f2a
2baca0d
b2e68d1
2baca0d
d6deec7
2baca0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e054870
 
 
f0030c7
c15f723
d378f2a
c15f723
8e9a815
fad6b55
c15f723
3c712c1
b8c87a6
8e9a815
6cdbf20
 
3036c83
230d9ba
3036c83
6cdbf20
b8c87a6
3036c83
 
6cdbf20
94f53fc
ef08bd0
3036c83
 
94f53fc
b8c87a6
8e9a815
b8c87a6
 
ee8b9cc
a2797f8
94f53fc
b8c87a6
cfed1ed
 
b8c87a6
94f53fc
ef08bd0
94f53fc
02f452d
3c712c1
e054870
 
 
337ccf9
17678fc
 
 
8e9a815
17678fc
adf3921
17678fc
c08b383
 
 
17678fc
 
8e9a815
17678fc
adf3921
17678fc
c08b383
 
 
e1ba54a
17678fc
d378f2a
17678fc
d378f2a
fad6b55
17678fc
0743d21
b8c87a6
 
 
 
8e9a815
b8c87a6
adf3921
b8c87a6
6033369
 
 
b8c87a6
 
8e9a815
b8c87a6
adf3921
b8c87a6
6033369
 
 
b8c87a6
6cdbf20
 
b8c87a6
 
 
6cdbf20
b8c87a6
 
 
6cdbf20
b8c87a6
6033369
b8c87a6
 
49c7ae8
0743d21
 
 
 
8e9a815
0743d21
adf3921
0743d21
6033369
 
 
0743d21
 
8e9a815
0743d21
adf3921
0743d21
6033369
 
 
0743d21
d5b5de9
 
0743d21
 
 
d5b5de9
0743d21
 
 
d5b5de9
0743d21
35339b8
0743d21
 
 
b8c87a6
 
98a343b
 
 
 
 
 
 
 
f0030c7
98a343b
 
f0030c7
98a343b
 
 
 
f0030c7
98a343b
 
 
f0030c7
 
74f594f
e054870
 
 
 
1223eb2
f0030c7
 
 
 
70a526c
5dabdf1
 
8e9a815
5dabdf1
f0030c7
 
 
 
 
72a77ec
 
70a526c
f0030c7
e054870
f0030c7
70a526c
 
2d7bc30
5359f07
70a526c
ce6518f
58e0da5
8b150b6
f0030c7
e054870
204e065
f0030c7
 
db3bad1
 
f0030c7
 
db3bad1
 
f0030c7
 
3348cb9
 
 
4fee723
3348cb9
 
1223eb2
3348cb9
72a77ec
4fee723
3348cb9
 
88d9942
3348cb9
 
98a343b
e6b029b
 
 
 
 
 
 
98a343b
 
 
 
 
 
 
 
 
 
f122880
b8c87a6
74f594f
e054870
 
 
b8c87a6
1223eb2
b8c87a6
 
 
70a526c
9ac6bac
 
8e9a815
5dabdf1
ce6518f
e870f88
21a6ab6
b8c87a6
 
f690e36
 
e870f88
0743d21
b8c87a6
 
f690e36
 
e870f88
0743d21
b8c87a6
 
f690e36
 
72a77ec
 
 
 
b8c87a6
e3103da
e054870
f690e36
8d07073
0ce110a
70a526c
8d07073
5359f07
8d07073
ce6518f
44a174a
ce6518f
469b565
b8c87a6
 
e054870
967d013
e054870
967d013
e054870
967d013
f690e36
 
db3bad1
 
 
 
 
 
f690e36
 
db3bad1
 
 
 
 
 
8c76c4e
25203d2
4fee723
c84b6bf
4fee723
 
edb0bcd
b8c87a6
94f53fc
35e0ec8
8c245db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import lftk
import spacy
import time
import os
import openai
import json

# Load the Vicuna 7B model and tokenizer
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3", load_in_4bit=True)

# Load the LLaMA 7b model and tokenizer
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
llama_model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf", load_in_4bit=True)

os.environ['OPENAI_API_KEY']
openai.api_key = os.environ['OPENAI_API_KEY']

def linguistic_features_fn(message):
    # Load a trained spaCy pipeline
    nlp = spacy.load("en_core_web_sm")

    # Create a spaCy doc object
    doc = nlp(message)

    # Initiate LFTK extractor by passing in the doc
    LFTK = lftk.Extractor(docs=doc)

    # Customize LFTK extractor (optional)
    LFTK.customize(stop_words=True, punctuations=False, round_decimal=3)

    # Use LFTK to dynamically extract handcrafted linguistic features
    extracted_features = LFTK.extract(features = ["a_word_ps", "a_kup_pw", "n_noun"])

    formatted_output = json.dumps(extracted_features, indent=2)

    print(formatted_output)

    return formatted_output

def chat(user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
    ''' Normal call of OpenAI API '''
    response = openai.ChatCompletion.create(
    temperature = temperature,
    model = model,
    messages=[
        {"role": "user", "content": user_prompt}
    ])
    
    res = response['choices'][0]['message']['content']
    
    if verbose:
        print('User prompt:', user_prompt)
        print('GPT response:', res)
        
    return res

def format_chat_prompt(message, chat_history, max_convo_length):
    prompt = ""
    for turn in chat_history[-max_convo_length:]:
        user_message, bot_message = turn
        prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
    prompt = f"{prompt}\nUser: {message}\nAssistant:"
    return prompt

def gpt_respond(tab_name, message, chat_history, max_convo_length = 10):
    # if (have_key == "No"):
    #     return "", chat_history
    
    formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
    print('GPT ling ents Prompt + Context:')
    print(formatted_prompt)
    bot_message = chat(user_prompt = f'''Output any <{tab_name}> in the following sentence one per line: "{formatted_prompt}"''')
    chat_history.insert(0, (message, bot_message))
    return "", chat_history

def vicuna_respond(tab_name, message, chat_history):
    formatted_prompt = f'''Output any {tab_name} in the following sentence one per line: "{message}"'''
    print('Vicuna Ling Ents Fn - Prompt + Context:')
    print(formatted_prompt)
    input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    print(bot_message)
    
    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    print(bot_message)
        
    chat_history.insert(0, (formatted_prompt, bot_message))
    time.sleep(2)
    return tab_name, "", chat_history

def llama_respond(tab_name, message, chat_history):
    formatted_prompt = f'''Output any {tab_name} in the following sentence one per line: "{message}"'''
    # print('Llama - Prompt + Context:')
    # print(formatted_prompt)
    input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)

    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    # print(bot_message)
        
    chat_history.insert(0, (formatted_prompt, bot_message))
    time.sleep(2)
    return tab_name, "", chat_history

def gpt_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history, max_convo_length = 10):
    # if (have_key == "No"):
    #     return "", chat_history
    
    formatted_system_prompt = ""
    if (task_name == "POS Tagging"):
        if (strategy == "S1"):
            formatted_system_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_system_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
        elif (strategy == "S3"):
            with open('demonstration_3_42_pos.txt', 'r') as f:
                demon_pos = f.read()
            formatted_system_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
    elif (task_name == "Chunking"):
        if (strategy == "S1"):
            formatted_system_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_system_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
        elif (strategy == "S3"):
            with open('demonstration_3_42_chunk.txt', 'r') as f:
                demon_chunk = f.read()
            formatted_system_prompt = f'''"{demon_chunk}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
        
    formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
    print('GPT coreNLP Prompt + Context:')
    print(formatted_prompt)
    bot_message = chat(user_prompt = formatted_system_prompt)
    chat_history.insert(0, (message, bot_message))
    return "", chat_history

def vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
    formatted_prompt = ""
    if (task_name == "POS Tagging"):
        if (strategy == "S1"):
            formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
        elif (strategy == "S3"):
            with open('demonstration_3_42_pos.txt', 'r') as f:
                demon_pos = f.read()
            formatted_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
    elif (task_name == "Chunking"):
        if (strategy == "S1"):
            formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
        elif (strategy == "S3"):
            with open('demonstration_3_42_chunk.txt', 'r') as f:
                demon_chunk = f.read()
            formatted_prompt = f'''"{demon_chunk}". Using the Chunking structure above, Chunk the following sentence: "{message}"'''
    
    print('Vicuna Strategy Fn - Prompt + Context:')
    print(formatted_prompt)
    input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    print(bot_message)
    
    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    print(bot_message)
        
    chat_history.insert(0, (formatted_prompt, bot_message))
    time.sleep(2)
    return task_name, "", chat_history

def llama_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
    formatted_prompt = ""
    if (task_name == "POS Tagging"):
        if (strategy == "S1"):
            formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
        elif (strategy == "S3"):
            with open('demonstration_3_42_pos.txt', 'r') as f:
                demon_pos = f.read()
            formatted_prompt = f'''"{demon_pos}". Using the POS tag structure above, POS tag the following sentence: "{message}"'''
    elif (task_name == "Chunking"):
        if (strategy == "S1"):
            formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
        elif (strategy == "S3"):
            with open('demonstration_3_42_chunk.txt', 'r') as f:
                demon_chunk = f.read()
            formatted_prompt = f'''"{demon_chunk}". Using the Chunking structure above, Chunk the following sentence: "{message}"'''
    
    print('Llama Strategies - Prompt + Context:')
    print(formatted_prompt)
    input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    print(bot_message)
    
    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    print(bot_message)
        
    chat_history.insert(0, (formatted_prompt, bot_message))
    time.sleep(2)
    return task_name, "", chat_history

def interface():
        with gr.Tab("Linguistic Entities"):
            with gr.Row():
                gr.Markdown("""
                            ## πŸ“œ Step-By-Step Instructions

                            - Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
                            - Select a Linguistic Entity from the Dropdown or enter a custom one.
                            - Click 'Submit' to send your inputs to the models.
                            - To submit a new prompt, repeat all the steps above and click 'Submit' again. Your new prompt should appear on the top of previous ones.

                            ### ⏳ After you click 'Submit', the models will take a couple seconds to process your inputs. 
                            ### πŸ€– Then, the models will output the linguistic entity found in your prompt based on your selection!

                            """)
                
                gr.Markdown("""
                            ### πŸ“Š Linguistic Complexity

                            - We use existing tool, [LFTK](https://github.com/brucewlee/lftk?tab=readme-ov-file), to estimate the liguistic complexity of input sentences.
                            - For more information regarding the meanings of each feature keyword, please reference their documentation [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416).
                            """)

            # Inputs
            ling_ents_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt here")
            # with gr.Row():
            #     # Will activate after getting API key
            #     have_key2 = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0.5)
            #     ling_ents_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your OpenAI key here", type="password")
            linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity", allow_custom_value=True, info="If your choice is not included in the options, please type your own.")
            ling_ents_btn = gr.Button(value="Submit")

            # Outputs

            user_prompt_1 = gr.Textbox(label="Original prompt")

            # Linguistic Complexities
            linguistic_features_textbox = gr.Textbox(label="Linguistic Complexity", disabled=True)
            gr.Markdown(" Definitions for the complexity indices can be found [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416).")

            with gr.Row():
                gpt_ling_ents_chatbot = gr.Chatbot(label="gpt-3.5")
                llama_ling_ents_chatbot = gr.Chatbot(label="llama-7b")
                vicuna_ling_ents_chatbot = gr.Chatbot(label="vicuna-7b")
            # clear = gr.ClearButton(components=[ling_ents_prompt, ling_ents_apikey_input, have_key2, linguistic_entities,
            #                                    vicuna_ling_ents_chatbot, llama_ling_ents_chatbot, gpt_ling_ents_chatbot,])
                                               
            # Event Handler for API Key
            # ling_ents_btn.click(update_api_key, inputs=ling_ents_apikey_input)

            def update_textbox(prompt):
                return prompt
                        
            ling_ents_btn.click(fn=update_textbox, inputs=ling_ents_prompt, outputs=user_prompt_1, api_name="ling_ents_btn")

            # Show features from LFTK 
            ling_ents_btn.click(linguistic_features_fn, inputs=[ling_ents_prompt], outputs=[linguistic_features_textbox])

            # Event Handler for GPT 3.5 Chatbot
            ling_ents_btn.click(gpt_respond, inputs=[linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot], 
                                outputs=[ling_ents_prompt, gpt_ling_ents_chatbot])
            
            # Event Handler for LLaMA Chatbot
            ling_ents_btn.click(llama_respond, inputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot], 
                      outputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot])
            
            # Event Handler for Vicuna Chatbot
            ling_ents_btn.click(vicuna_respond, inputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot], 
                      outputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot])

        with gr.Tab("CoreNLP"):
            with gr.Row():
                gr.Markdown("""
                            ## πŸ“œ Step-By-Step Instructions

                            - Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
                            - Select a Task from the Dropdown.
                            - Select a Linguistic Entity from the Dropdown or enter a custom one.
                            - Click 'Submit' to send your inputs to the models.
                            - To submit a new prompt, repeat all the steps above and click 'Submit' again. Your new prompt should appear on the top of previous ones.

                            ### ⏳ After you click 'Submit', the models will take a couple seconds to process your inputs. 
                            ### πŸ€– Then, the models will output the POS Tagging or Chunking in your prompt with three different strategies based on your selections!

                            """)
                
                with gr.Column():
                    gr.Markdown("""
                            ### πŸ“Š Linguistic Complexity

                            - We use existing tool, [LFTK](https://github.com/brucewlee/lftk?tab=readme-ov-file), to estimate the liguistic complexity of input sentences.
                            - For more information regarding the meanings of each feature keyword, please reference their documentation [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416).
                            """)
                    
                    gr.Markdown("""
                                ### πŸ› οΈ How each Strategy works

                                - Strategy 1 - QA-Based Prompting
                                    - The model is prompted with a question-answer format. The input consists of a question, and the model generates a response based on the understanding of the question and its knowledge.
                                - Strategy 2 - Instruction-Based Prompting
                                    - Involves providing the model with explicit instructions on how to generate a response. Instead of relying solely on context or previous knowledge, the instructions guide the model in generating content that aligns with specific criteria.
                                - Strategy 3 - Structured Prompting
                                    - Involves presenting information to the model in a structured format, often with defined sections or categories. The model then generates responses following the given structure. 
                                """)
            
            # Inputs
            task_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt here")
            # with gr.Row():
            #     have_key = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0.5)
            #     task_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your OpenAI key here", type="password", visible=True)
            task = gr.Dropdown(["POS Tagging", "Chunking"], label="Task")
            task_linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity For Strategy 1", allow_custom_value=True, info="If your choice is not included in the options, please type your own.")
            task_btn = gr.Button(value="Submit")

            # Outputs
            user_prompt_2 = gr.Textbox(label="Original prompt", )

            # Linguistic Complexity
            linguistic_features_textbox_2 = gr.Textbox(label="Linguistic Complexity", disabled=True)
            gr.Markdown(" Definitions for the complexity indices can be found [here](https://docs.google.com/spreadsheets/d/1uXtQ1ah0OL9cmHp2Hey0QcHb4bifJcQFLvYlVIAWWwQ/edit#gid=693915416).")

            gr.Markdown("### Strategy 1 - QA-Based Prompting")
            strategy1 = gr.Markdown("S1", visible=False)
            with gr.Row():
                gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
                llama_S1_chatbot = gr.Chatbot(label="llama-7b")
                vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
            gr.Markdown("### Strategy 2 - Instruction-Based Prompting")
            strategy2 = gr.Markdown("S2", visible=False)
            with gr.Row():
                gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
                llama_S2_chatbot = gr.Chatbot(label="llama-7b")
                vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
            gr.Markdown("### Strategy 3 - Structured Prompting")
            strategy3 = gr.Markdown("S3", visible=False)
            with gr.Row():
                gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
                llama_S3_chatbot = gr.Chatbot(label="llama-7b")
                vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
            # clear_all = gr.ClearButton(components=[task_prompt, task_apikey_input, have_key, task, task_linguistic_entities,
            #                                    vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot, 
            #                                    vicuna_S2_chatbot, llama_S2_chatbot, gpt_S2_chatbot,
            #                                    vicuna_S3_chatbot, llama_S3_chatbot, gpt_S3_chatbot])
            
            # Event Handler for API Key
            # task_btn.click(update_api_key, inputs=task_apikey_input)

            # Show user's original prompt  
            def update_textbox(prompt):
                return prompt
            
            task_btn.click(fn=update_textbox, inputs=task_prompt, outputs=user_prompt_2, api_name="task_btn")

            # Show features from LFTK 
            task_btn.click(linguistic_features_fn, inputs=[task_prompt], outputs=[linguistic_features_textbox_2])

            # Event Handler for GPT 3.5 Chatbot POS/Chunk, user must submit api key before submitting the prompt
            # Will activate after getting API key
            # task_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input)
            task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, gpt_S1_chatbot], 
                                outputs=[task_prompt, gpt_S1_chatbot])
            task_btn.click(gpt_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, gpt_S2_chatbot], 
                                outputs=[task_prompt, gpt_S2_chatbot])
            task_btn.click(gpt_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, gpt_S3_chatbot], 
                                outputs=[task_prompt, gpt_S3_chatbot])
            
            # Event Handler for LLaMA Chatbot POS/Chunk
            task_btn.click(llama_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, llama_S1_chatbot], 
                      outputs=[task, task_prompt, llama_S1_chatbot])
            task_btn.click(llama_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, llama_S2_chatbot], 
                      outputs=[task, task_prompt, llama_S2_chatbot])
            task_btn.click(llama_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, llama_S3_chatbot], 
                      outputs=[task, task_prompt, llama_S3_chatbot])
            
            # Event Handlers for Vicuna Chatbot POS/Chunk
            task_btn.click(vicuna_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, vicuna_S1_chatbot], 
                      outputs=[task, task_prompt, vicuna_S1_chatbot])
            task_btn.click(vicuna_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, vicuna_S2_chatbot], 
                      outputs=[task, task_prompt, vicuna_S2_chatbot])
            task_btn.click(vicuna_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, vicuna_S3_chatbot], 
                      outputs=[task, task_prompt, vicuna_S3_chatbot])

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
                # LingEval
                ## A Comparative Analysis of the Core Linguistic Knowledge in Large Language Models
                """)

    # load interface
    interface()
    
demo.launch()