File size: 20,743 Bytes
b308128
937be2f
cd41e3a
cd1760d
7f877a9
2baca0d
738a5f6
 
94f53fc
224700e
 
94f53fc
 
21090d3
 
04fc021
1941971
e5f657f
1941971
6204d1b
1941971
8c76c4e
b2e68d1
2baca0d
b2e68d1
2baca0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0030c7
 
 
 
c15f723
 
 
adf3921
c15f723
 
 
3c712c1
b8c87a6
adf3921
6cdbf20
 
3036c83
230d9ba
3036c83
6cdbf20
b8c87a6
3036c83
 
6cdbf20
94f53fc
3036c83
 
 
94f53fc
b8c87a6
adf3921
b8c87a6
 
ee8b9cc
a2797f8
94f53fc
b8c87a6
cfed1ed
 
b8c87a6
94f53fc
68440cc
94f53fc
02f452d
3c712c1
337ccf9
 
 
 
17678fc
 
 
adf3921
17678fc
adf3921
17678fc
adf3921
17678fc
 
adf3921
17678fc
adf3921
17678fc
adf3921
e1ba54a
17678fc
 
 
 
 
 
 
0743d21
b8c87a6
 
 
 
adf3921
b8c87a6
adf3921
b8c87a6
adf3921
b8c87a6
 
adf3921
b8c87a6
adf3921
b8c87a6
adf3921
b8c87a6
6cdbf20
 
b8c87a6
 
 
6cdbf20
b8c87a6
 
 
6cdbf20
b8c87a6
 
 
 
49c7ae8
0743d21
 
 
 
adf3921
0743d21
adf3921
0743d21
adf3921
0743d21
 
adf3921
0743d21
adf3921
0743d21
adf3921
0743d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8c87a6
 
f0030c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70a526c
f0030c7
 
 
 
 
 
67b28a6
 
70a526c
f0030c7
 
 
70a526c
 
 
 
 
f0030c7
 
204e065
f0030c7
 
 
 
 
 
 
 
 
 
3348cb9
 
 
4fee723
3348cb9
 
 
 
 
 
 
 
4fee723
3348cb9
 
88d9942
3348cb9
 
 
 
 
 
 
b8c87a6
3348cb9
5160266
3348cb9
5160266
3348cb9
5160266
3348cb9
f122880
b8c87a6
 
e7e5931
337ccf9
17678fc
b8c87a6
 
 
 
 
70a526c
e870f88
21a6ab6
b8c87a6
 
f690e36
 
e870f88
0743d21
b8c87a6
 
f690e36
 
e870f88
0743d21
b8c87a6
 
f690e36
 
e02ba6b
b8c87a6
 
 
 
e3103da
17678fc
f690e36
8d07073
0ce110a
70a526c
8d07073
70a526c
8d07073
469b565
b8c87a6
 
337ccf9
967d013
e02ba6b
967d013
e02ba6b
967d013
f690e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c76c4e
25203d2
4fee723
 
 
 
edb0bcd
b8c87a6
94f53fc
35e0ec8
8c245db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import lftk
import spacy
import time
import os
import openai

# Load the Vicuna 7B model and tokenizer
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")

# Load the LLaMA 7b model and tokenizer
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
llama_model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf")

def update_api_key(new_key):
    print("update_api_key ran")
    global api_key
    os.environ['OPENAI_API_TOKEN'] = new_key
    openai.api_key = os.environ['OPENAI_API_TOKEN']

def chat(system_prompt, user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
    ''' Normal call of OpenAI API '''
    response = openai.ChatCompletion.create(
    temperature = temperature,
    model=model,
    messages=[
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ])
    
    res = response['choices'][0]['message']['content']
    
    if verbose:
        print('System prompt:', system_prompt)
        print('User prompt:', user_prompt)
        print('GPT response:', res)
        
    return res

def format_chat_prompt(message, chat_history, max_convo_length):
    prompt = ""
    for turn in chat_history[-max_convo_length:]:
        user_message, bot_message = turn
        prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
    prompt = f"{prompt}\nUser: {message}\nAssistant:"
    return prompt

def gpt_respond(have_key, tab_name, message, chat_history, max_convo_length = 10):
    if (have_key == "No"):
        return "", chat_history
    
    formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
    print('Prompt + Context:')
    print(formatted_prompt)
    bot_message = chat(system_prompt = f'''Generate the output only for the assistant. Output any <{tab_name}> in the following sentence one per line.''',
                       user_prompt = formatted_prompt)
    chat_history.append((message, bot_message))
    return "", chat_history

def vicuna_respond(tab_name, message, chat_history):
    formatted_prompt = f'''Output any {tab_name} in the following sentence one per line: "{message}"'''
    print('Vicuna Ling Ents Fn - Prompt + Context:')
    print(formatted_prompt)
    input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    print(bot_message)
    
    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    print(bot_message)
        
    chat_history.append((formatted_prompt, bot_message))
    time.sleep(2)
    return tab_name, "", chat_history

def llama_respond(tab_name, message, chat_history):
    formatted_prompt = f'''Output any {tab_name} in the following sentence one per line: "{message}"'''
    # print('Llama - Prompt + Context:')
    # print(formatted_prompt)
    input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)

    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    # print(bot_message)
        
    chat_history.append((formatted_prompt, bot_message))
    time.sleep(2)
    return tab_name, "", chat_history

def gpt_strategies_respond(have_key, strategy, task_name, task_ling_ent, message, chat_history, max_convo_length = 10):
    if (have_key == "No"):
        return "", chat_history
    
    formatted_system_prompt = ""
    if (task_name == "POS Tagging"):
        if (strategy == "S1"):
            formatted_system_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_system_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
        elif (strategy == "S3"):
            formatted_system_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
    elif (task_name == "Chunking"):
        if (strategy == "S1"):
            formatted_system_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_system_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
        elif (strategy == "S3"):
            formatted_system_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
        
    formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
    print('Prompt + Context:')
    print(formatted_prompt)
    bot_message = chat(system_prompt = formatted_system_prompt,
                    user_prompt = formatted_prompt)
    chat_history.append((message, bot_message))
    return "", chat_history

def vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
    formatted_prompt = ""
    if (task_name == "POS Tagging"):
        if (strategy == "S1"):
            formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
        elif (strategy == "S3"):
            formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
    elif (task_name == "Chunking"):
        if (strategy == "S1"):
            formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
        elif (strategy == "S3"):
            formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
    
    print('Vicuna Strategy Fn - Prompt + Context:')
    print(formatted_prompt)
    input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    print(bot_message)
    
    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    print(bot_message)
        
    chat_history.append((formatted_prompt, bot_message))
    time.sleep(2)
    return task_name, "", chat_history

def llama_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
    formatted_prompt = ""
    if (task_name == "POS Tagging"):
        if (strategy == "S1"):
            formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
        elif (strategy == "S3"):
            formatted_prompt = f'''POS tag the following sentence using Universal POS tag set: "{message}"'''
    elif (task_name == "Chunking"):
        if (strategy == "S1"):
            formatted_prompt = f'''Output any {task_ling_ent} in the following sentence one per line: "{message}"'''
        elif (strategy == "S2"):
            formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
        elif (strategy == "S3"):
            formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags: "{message}"'''
    
    # print('Llama Strategies - Prompt + Context:')
    # print(formatted_prompt)
    input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    # print(bot_message)
    
    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    # print(bot_message)
        
    chat_history.append((formatted_prompt, bot_message))
    time.sleep(2)
    return task_name, "", chat_history

def interface():
        with gr.Tab("Linguistic Entities"):
            gr.Markdown("""
                        ## πŸ“œ Step-By-Step Instructions

                        - Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
                        - If you own an OpenAI API key, select 'Yes' in the dropdown. If you don't own one, select 'No'.
                            - If you selected 'Yes', enter your OpenAI API Key [Link to your OpenAI keys](https://platform.openai.com/api-keys).
                            - If you selected 'No', leave the 'OpenAI Key' field blank and continue with the rest.
                        - Select a Linguistic Entity from the Dropdown.
                        - Click 'Submit' to send your inputs to the models.
                        - To enter a new prompt, scroll to the bottom and click 'Clear' to start again.

                        ### ⏳ After you click 'Submit', the models will take a couple seconds to process your inputs. 
                        ### πŸ€– Then, the models will output the linguistic entity found in your prompt based on your selection!

                        Note: If you get an 'Error' in the gpt-3.5 model, check the following:
                        - Check that you entered your key correctly without any extra characters.
                        - If you used a free key, it means you exceeded your quota from the free API Key.
                        """)

            # Inputs
            ling_ents_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
            with gr.Row():
                # Will activate after getting API key
                have_key2 = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0.5)
                ling_ents_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
            linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity")
            ling_ents_btn = gr.Button(value="Submit")

            # Outputs

            user_prompt_1 = gr.Textbox(label="Original prompt")
            # linguistic_features_textbox = gr.Textbox(label="Linguistic Features", disabled=True)

            with gr.Row():
                gpt_ling_ents_chatbot = gr.Chatbot(label="gpt-3.5")
                llama_ling_ents_chatbot = gr.Chatbot(label="llama-7b")
                vicuna_ling_ents_chatbot = gr.Chatbot(label="vicuna-7b")
            clear = gr.ClearButton(components=[ling_ents_prompt, ling_ents_apikey_input, have_key2, linguistic_entities,
                                               vicuna_ling_ents_chatbot, llama_ling_ents_chatbot, gpt_ling_ents_chatbot,])
                                               
            # Event Handler for API Key
            ling_ents_btn.click(update_api_key, inputs=ling_ents_apikey_input)

            def update_textbox(prompt):
                return prompt
            
            task_btn.click(fn=update_textbox, inputs=user_prompt_1, outputs=user_prompt_1, api_name="task_btn")

            # Event Handler for GPT 3.5 Chatbot
            ling_ents_btn.click(gpt_respond, inputs=[have_key2, linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot], 
                                outputs=[ling_ents_prompt, gpt_ling_ents_chatbot])
            
            # Event Handler for LLaMA Chatbot
            ling_ents_btn.click(llama_respond, inputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot], 
                      outputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot])
            
            # Event Handler for Vicuna Chatbot
            ling_ents_btn.click(vicuna_respond, inputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot], 
                      outputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot])

        with gr.Tab("CoreNLP"):
            with gr.Row():
                gr.Markdown("""
                            ## πŸ“œ Step-By-Step Instructions

                            - Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
                            - If you own an OpenAI API key, select 'Yes' in the dropdown. If you don't own one, select 'No'.
                                - If you selected 'Yes', enter your OpenAI API Key [Link to your OpenAI keys](https://platform.openai.com/api-keys).
                                - If you selected 'No', leave the 'OpenAI Key' field blank and continue with the rest.
                            - Select a Task from the Dropdown.
                            - Select a Linguistic Entity from the Dropdown.
                            - Click 'Submit' to send your inputs to the models.
                            - To enter a new prompt, scroll to the bottom and click 'Clear' to start again.

                            ### ⏳ After you click 'Submit', the models will take a couple seconds to process your inputs. 
                            ### πŸ€– Then, the models will output the POS Tagging or Chunking in your prompt with three different strategies based on your selections!

                            Note: If you get an 'Error' in the gpt-3.5 model, check the following:
                            - Check that you entered your key correctly without any extra characters.
                            - If you used a free key, it means you exceeded your quota from the free API Key.
                            """)
                
                gr.Markdown("""
                            ### πŸ› οΈ How each Strategy works

                            - Strategy 1 - QA-Based Prompting
                                - The model is prompted with a question-answer format. The input consists of a question, and the model generates a response based on the understanding of the question and its knowledge.
                            - Strategy 2 - Instruction-Based Prompting
                                - Involves providing the model with explicit instructions on how to generate a response. Instead of relying solely on context or previous knowledge, the instructions guide the model in generating content that aligns with specific criteria.
                            - Strategy 3 - Structured Prompting
                                - Involves presenting information to the model in a structured format, often with defined sections or categories. The model then generates responses following the given structure. 
                            """)
            
            # Inputs
            task_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
            with gr.Row():
                have_key = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0.5)
                task_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your OpenAI key here", type="password", visible=True)
            task = gr.Dropdown(["POS Tagging", "Chunking"], label="Task")
            task_linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity For Strategy 1")
            task_btn = gr.Button(value="Submit")

            # Outputs
            user_prompt_2 = gr.Textbox(label="Original prompt", )
            gr.Markdown("### Strategy 1 - QA-Based Prompting")
            strategy1 = gr.Markdown("S1", visible=False)
            with gr.Row():
                gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
                llama_S1_chatbot = gr.Chatbot(label="llama-7b")
                vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
            gr.Markdown("### Strategy 2 - Instruction-Based Prompting")
            strategy2 = gr.Markdown("S2", visible=False)
            with gr.Row():
                gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
                llama_S2_chatbot = gr.Chatbot(label="llama-7b")
                vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
            gr.Markdown("### Strategy 3 - Structured Prompting")
            strategy3 = gr.Markdown("S3", visible=False)
            with gr.Row():
                gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
                llama_S3_chatbot = gr.Chatbot(label="llama-7b")
                vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
            clear_all = gr.ClearButton(components=[task_prompt, task_apikey_input, have_key, task, task_linguistic_entities,
                                               vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot, 
                                               vicuna_S2_chatbot, llama_S2_chatbot, gpt_S2_chatbot,
                                               vicuna_S3_chatbot, llama_S3_chatbot, gpt_S3_chatbot])
            
            # Event Handler for API Key
            task_btn.click(update_api_key, inputs=task_apikey_input)

            # Show user's original prompt  
            def update_textbox(prompt):
                return prompt
            
            task_btn.click(fn=update_textbox, inputs=user_prompt_2, outputs=user_prompt_2, api_name="task_btn")

            # Event Handler for GPT 3.5 Chatbot POS/Chunk, user must submit api key before submitting the prompt
            # Will activate after getting API key
            # task_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input)
            task_btn.click(gpt_strategies_respond, inputs=[have_key, strategy1, task, task_linguistic_entities, task_prompt, gpt_S1_chatbot], 
                                outputs=[task_prompt, gpt_S1_chatbot])
            task_btn.click(gpt_strategies_respond, inputs=[have_key, strategy2, task, task_linguistic_entities, task_prompt, gpt_S2_chatbot], 
                                outputs=[task_prompt, gpt_S2_chatbot])
            task_btn.click(gpt_strategies_respond, inputs=[have_key, strategy3, task, task_linguistic_entities, task_prompt, gpt_S3_chatbot], 
                                outputs=[task_prompt, gpt_S3_chatbot])
            
            # Event Handler for LLaMA Chatbot POS/Chunk
            task_btn.click(llama_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, llama_S1_chatbot], 
                      outputs=[task, task_prompt, llama_S1_chatbot])
            task_btn.click(llama_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, llama_S2_chatbot], 
                      outputs=[task, task_prompt, llama_S2_chatbot])
            task_btn.click(llama_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, llama_S3_chatbot], 
                      outputs=[task, task_prompt, llama_S3_chatbot])
            
            # vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
            # Event Handlers for Vicuna Chatbot POS/Chunk
            task_btn.click(vicuna_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, vicuna_S1_chatbot], 
                      outputs=[task, task_prompt, vicuna_S1_chatbot])
            task_btn.click(vicuna_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, vicuna_S2_chatbot], 
                      outputs=[task, task_prompt, vicuna_S2_chatbot])
            task_btn.click(vicuna_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, vicuna_S3_chatbot], 
                      outputs=[task, task_prompt, vicuna_S3_chatbot])

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
                # Assessing the Articulate
                ## A Comparative Analysis of the Core Linguistic Knowledge in Large Language Models
                """)

    # load interface
    interface()
    
demo.launch()