File size: 17,132 Bytes
d170be2 ca9b39d d170be2 ca9b39d d170be2 ca9b39d ad31b8f ca9b39d ad31b8f ca9b39d d170be2 ca9b39d ad31b8f ca9b39d 90fc92b ca9b39d ad31b8f d170be2 ca9b39d d170be2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
#!/usr/bin/env python3
"""OCR template."""
from __future__ import annotations
import logging
import os
from enum import Enum
from pathlib import Path
from queue import SimpleQueue
from typing import Any, Final, Iterable, Optional, TypeAlias
import cv2 as cv2
import numpy as np
import numpy.typing as npt
import pandas as pd # type: ignore
import pdf2image # type: ignore
import rerun as rr # pip install rerun-sdk
import rerun.blueprint as rrb
from paddleocr import PPStructure # type: ignore
from paddleocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes # type: ignore
EXAMPLE_DIR: Final = Path(os.path.dirname(__file__))
DATASET_DIR: Final = EXAMPLE_DIR / "dataset"
SAMPLE_IMAGE_URLs = ["https://storage.googleapis.com/rerun-example-datasets/ocr/paper.png"]
PAGE_LIMIT = 10
LayoutStructure: TypeAlias = tuple[
list[str], list[str], list[rrb.Spatial2DView], list[rrb.Spatial2DView], list[rrb.Spatial2DView]
]
# Supportive Classes
class Color:
Red = (255, 0, 0)
Green = (0, 255, 0)
Blue = (0, 0, 255)
Yellow = (255, 255, 0)
Cyan = (0, 255, 255)
Magenta = (255, 0, 255)
Purple = (128, 0, 128)
Orange = (255, 165, 0)
"""
LayoutType:
Defines an enumeration for different types of document layout elements, each associated with a unique number, name,
and color. Types:
- UNKNOWN: Default type for undefined or unrecognized elements, represented by purple.
- TITLE: Represents the title of a document, represented by red.
- TEXT: Represents plain text content within the document, represented by green.
- FIGURE: Represents graphical or image content, represented by blue.
- FIGURE_CAPTION: Represents captions for figures, represented by yellow.
- TABLE: Represents tabular data, represented by cyan.
- TABLE_CAPTION: Represents captions for tables, represented by magenta.
- REFERENCE: Represents citation references within the document, also represented by purple.
- Footer: Represents footer of the document, represented as orange.
"""
class LayoutType(Enum):
UNKNOWN = (0, "unknown", Color.Purple)
TITLE = (1, "title", Color.Red)
TEXT = (2, "text", Color.Green)
FIGURE = (3, "figure", Color.Blue)
FIGURE_CAPTION = (4, "figure_caption", Color.Yellow)
TABLE = (5, "table", Color.Cyan)
TABLE_CAPTION = (6, "table_caption", Color.Magenta)
REFERENCE = (7, "reference", Color.Purple)
FOOTER = (8, "footer", Color.Orange)
def __str__(self) -> str:
return str(self.value[1]) # Returns the string part (type)
@property
def number(self) -> int:
return self.value[0] # Returns the numerical identifier
@property
def type(self) -> str:
return self.value[1] # Returns the type
@property
def color(self) -> tuple[int, int, int]:
return self.value[2] # Returns the color
@staticmethod
def get_class_id(text: str) -> int:
try:
return LayoutType[text.upper()].number
except KeyError:
logging.warning(f"Invalid layout type {text}")
return 0
@staticmethod
def get_type(text: str) -> LayoutType:
try:
return LayoutType[text.upper()]
except KeyError:
logging.warning(f"Invalid layout type {text}")
return LayoutType.UNKNOWN
@classmethod
def get_annotation(cls) -> list[tuple[int, str, tuple[int, int, int]]]:
return [(layout.number, layout.type, layout.color) for layout in cls]
"""
Layout Class:
The main purpose of this class is to:
1. Keep track of the layout types (including type, numbering)
2. Save the detections for each layout (text, img or table)
3. Save the bounding box of each detected layout
4. Generate the recovery text document
"""
class Layout:
def __init__(self, show_unknown: bool = False):
self.counts = {layout_type: 0 for layout_type in LayoutType}
self.records: dict[LayoutType, Any] = {layout_type: [] for layout_type in LayoutType}
self.recovery = """"""
self.show_unknown = show_unknown
def add(
self,
layout_type: LayoutType,
bounding_box: list[int],
detections: Optional[Iterable[dict[str, Any]]] = None,
table: Optional[str] = None,
figure: Optional[dict[str, Any]] = None,
) -> None:
if layout_type in LayoutType:
self.counts[layout_type] += 1
name = f"{layout_type}{self.counts[layout_type]}"
logging.info(f"Saved layout type {layout_type} with name: {name}")
self.records[layout_type].append({
"type": layout_type,
"name": name,
"bounding_box": bounding_box,
"detections": detections,
"table": table,
})
if layout_type != LayoutType.UNKNOWN or self.show_unknown: # Discards the unknown layout types detections
path = f"recording://Image/{layout_type.type.title()}/{name.title()}"
self.recovery += f"\n\n## [{name.title()}]({path})\n\n" # Log Type as Heading
# Enhancement - Logged image for Figure type TODO(#6517)
if layout_type == LayoutType.TABLE:
if table:
self.recovery += table # Log details (table)
elif detections:
for index, detection in enumerate(detections):
path_text = f"recording://Image/{layout_type.type.title()}/{name.title()}/Detections/{index}"
self.recovery += f' [{detection["text"]}]({path_text})' # Log details (text)
else:
logging.warning(f"Invalid layout type detected: {layout_type}")
def get_count(self, layout_type: LayoutType) -> int:
if layout_type in LayoutType:
return self.counts[layout_type]
else:
raise ValueError("Invalid layout type")
def get_records(self) -> dict[LayoutType, list[dict[str, Any]]]:
return self.records
def save_all_layouts(self, results: list[dict[str, Any]]) -> None:
for line in results:
self.save_layout_data(line)
for layout_type in LayoutType:
logging.info(f"Number of detections for type {layout_type}: {self.counts[layout_type]}")
def save_layout_data(self, line: dict[str, Any]) -> None:
type = line.get("type", "empty")
box = line.get("bbox", [0, 0, 0, 0])
layout_type = LayoutType.get_type(type)
detections, table, img = [], None, None
if layout_type == LayoutType.TABLE:
table = self.get_table_markdown(line)
elif layout_type == LayoutType.FIGURE:
detections = self.get_detections(line)
img = line.get("img") # Currently not in use
else:
detections = self.get_detections(line)
self.add(layout_type, box, detections=detections, table=table, figure=img)
@staticmethod
def get_detections(line: dict[str, Any]) -> list[dict[str, Any]]:
detections = []
results = line.get("res")
if results is not None:
for i, result in enumerate(results):
text = result.get("text")
confidence = result.get("confidence")
box = result.get("text_region")
x_min, y_min = box[0]
x_max, y_max = box[2]
new_box = [x_min, y_min, x_max, y_max]
detections.append({"id": i, "text": text, "confidence": confidence, "box": new_box})
return detections
# Safely attempt to extract the HTML table from the results
@staticmethod
def get_table_markdown(line: dict[str, Any]) -> str:
try:
html_table = line.get("res", {}).get("html")
if not html_table:
return "No table found."
dataframes = pd.read_html(html_table)
if not dataframes:
return "No data extracted from the table."
markdown_table = dataframes[0].to_markdown()
return markdown_table # type: ignore[no-any-return]
except Exception as e:
return f"Error processing the table: {str(e)}"
def process_layout_records(log_queue: SimpleQueue[Any], layout: Layout, page_path: str) -> LayoutStructure:
paths, detections_paths = [], []
zoom_paths: list[rrb.Spatial2DView] = []
zoom_paths_figures: list[rrb.Spatial2DView] = []
zoom_paths_tables: list[rrb.Spatial2DView] = []
zoom_paths_texts: list[rrb.Spatial2DView] = []
for layout_type in LayoutType:
for record in layout.records[layout_type]:
record_name = record["name"].title()
record_base_path = f"{page_path}/Image/{layout_type.type.title()}/{record_name}"
paths.append(f"-{record_base_path}/**")
detections_paths.append(f"-{record_base_path}/Detections/**")
# Log bounding box
log_queue.put([
"log",
record_base_path,
[
rr.Boxes2D(
array=record["bounding_box"],
array_format=rr.Box2DFormat.XYXY,
labels=[str(layout_type.type)],
class_ids=[str(layout_type.number)],
),
rr.AnyValues(name=record_name),
],
])
log_detections(log_queue, layout_type, record, record_base_path)
# Prepare zoom path views
update_zoom_paths(
layout,
layout_type,
record,
paths,
page_path,
zoom_paths,
zoom_paths_figures,
zoom_paths_tables,
zoom_paths_texts,
)
return paths, detections_paths, zoom_paths_figures, zoom_paths_tables, zoom_paths_texts
def log_detections(log_queue: SimpleQueue, layout_type: LayoutType, record: dict[str, Any], page_path: str) -> None:
if layout_type == LayoutType.TABLE:
log_queue.put([
"log",
f"Extracted{record['name']}",
[rr.TextDocument(record["table"], media_type=rr.MediaType.MARKDOWN)],
])
else:
for detection in record.get("detections", []):
log_queue.put([
"log",
f"{page_path}/Detections/{detection['id']}",
[
rr.Boxes2D(
array=detection["box"], array_format=rr.Box2DFormat.XYXY, class_ids=[str(layout_type.number)]
),
rr.AnyValues(
DetectionID=detection["id"], Text=detection["text"], Confidence=detection["confidence"]
),
],
])
def update_zoom_paths(
layout: Layout,
layout_type: LayoutType,
record: dict[str, Any],
paths: list[str],
page_path: str,
zoom_paths: list[rrb.Spatial2DView],
zoom_paths_figures: list[rrb.Spatial2DView],
zoom_paths_tables: list[rrb.Spatial2DView],
zoom_paths_texts: list[rrb.Spatial2DView],
) -> None:
if layout_type in [LayoutType.FIGURE, LayoutType.TABLE, LayoutType.TEXT]:
current_paths = paths.copy()
current_paths.remove(f"-{page_path}/Image/{layout_type.type.title()}/{record['name'].title()}/**")
bounds = rrb.VisualBounds2D(
x_range=[record["bounding_box"][0] - 10, record["bounding_box"][2] + 10],
y_range=[record["bounding_box"][1] - 10, record["bounding_box"][3] + 10],
)
# Add to zoom paths
view = rrb.Spatial2DView(
name=record["name"].title(), contents=[f"{page_path}/Image/**"] + current_paths, visual_bounds=bounds
)
zoom_paths.append(view)
# Add to type-specific zoom paths
if layout_type == LayoutType.FIGURE:
zoom_paths_figures.append(view)
elif layout_type == LayoutType.TABLE:
zoom_paths_tables.append(view)
elif layout_type != LayoutType.UNKNOWN or layout.show_unknown:
zoom_paths_texts.append(view)
def generate_blueprint(
layouts: list[Layout],
page_paths: list[str],
processed_layouts: list[LayoutStructure],
) -> rrb.Blueprint:
page_tabs = []
for layout, (page_path, processed_layout) in zip(layouts, zip(page_paths, processed_layouts)):
paths, detections_paths, zoom_paths_figures, zoom_paths_tables, zoom_paths_texts = processed_layout
section_tabs = []
content_data: dict[str, Any] = {
"Figures": zoom_paths_figures,
"Tables": zoom_paths_tables,
"Texts": zoom_paths_texts,
}
for name, paths in content_data.items():
if paths:
section_tabs.append(rrb.Tabs(*paths, name=name)) # type: ignore[arg-type]
page_tabs.append(
rrb.Vertical(
rrb.Horizontal(
rrb.Spatial2DView(
name="Layout",
origin=f"{page_path}/Image/",
contents=[f"{page_path}/Image/**"] + detections_paths,
),
rrb.Spatial2DView(name="Detections", contents=[f"{page_path}/Image/**"]),
rrb.Vertical(
rrb.TextDocumentView(name="Progress", contents=["progress/**"]),
rrb.TextDocumentView(name="Recovery", contents=f"{page_path}/Recovery"),
row_shares=[1, 4]
)
),
rrb.Horizontal(*section_tabs),
name=page_path,
row_shares=[4, 3],
)
)
return rrb.Blueprint(
rrb.Tabs(*page_tabs),
collapse_panels=True,
)
def detect_and_log_layouts(log_queue: SimpleQueue[Any], file_path: str, start_page: int = 1, end_page: int | None = -1) -> None:
if end_page == -1:
end_page = start_page + PAGE_LIMIT-1
if end_page < start_page:
end_page = start_page
print(start_page, end_page)
images: list[npt.NDArray[np.uint8]] = []
if file_path.endswith(".pdf"):
# convert pdf to images
images.extend(np.array(img, dtype=np.uint8) for img in pdf2image.convert_from_path(file_path, first_page=start_page, last_page=end_page))
print(len(images))
if len(images) > PAGE_LIMIT:
log_queue.put([
"log",
"progress",
[rr.TextDocument(f"Too many pages requsted: {len(images)} requested but the limit is {PAGE_LIMIT}")],
])
return
else:
# read image
img = cv2.imread(file_path)
coloured_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
images.append(coloured_image.astype(np.uint8))
# Extracte the layout from each image
layouts: list[Layout] = []
page_paths = [f"page_{i + start_page}" for i in range(len(images))]
processed_layouts: list[LayoutStructure] = []
for i, (image, page_path) in enumerate(zip(images, page_paths)):
layouts.append(detect_and_log_layout(log_queue, image, page_path))
# Generate and send a blueprint based on the detected layouts
processed_layouts.append(
process_layout_records(
log_queue,
layouts[-1],
page_path,
)
)
logging.info("Sending blueprint...")
blueprint = generate_blueprint(layouts, page_paths, processed_layouts)
log_queue.put(["blueprint", blueprint])
logging.info("Blueprint sent...")
def detect_and_log_layout(log_queue: SimpleQueue, coloured_image: npt.NDArray[np.uint8], page_path: str = "") -> Layout:
# Layout Object - This will contain the detected layouts and their detections
layout = Layout()
# Log Image and add Annotation Context
log_queue.put([
"log",
f"{page_path}/Image",
[rr.Image(coloured_image)],
])
log_queue.put([
"log",
f"{page_path}/Image",
# The annotation is defined in the Layout class based on its properties
[rr.AnnotationContext(LayoutType.get_annotation())],
{
"static": True,
},
])
# Paddle Model - Getting Predictions
logging.info("Start detection... (It usually takes more than 10-20 seconds per page)")
ocr_model_pp = PPStructure(show_log=False, recovery=True)
logging.info("model loaded")
result_pp = ocr_model_pp(coloured_image)
_, w, _ = coloured_image.shape
result_pp = sorted_layout_boxes(result_pp, w)
logging.info("Detection finished...")
# Add results to the layout
layout.save_all_layouts(result_pp)
logging.info("All results are saved...")
# Recovery Text Document for the detected text
log_queue.put([
"log",
f"{page_path}/Recovery",
[rr.TextDocument(layout.recovery, media_type=rr.MediaType.MARKDOWN)],
])
return layout
|