Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,626 Bytes
71d5bf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Copyright (c) 2023, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import mcubes
import numpy as np
import nvdiffrast.torch as dr
import torch
import torch.nn as nn
from einops import rearrange
from ..utils.mesh_util import xatlas_uvmap
from .decoder.transformer import TriplaneTransformer
from .encoder.dino_wrapper import DinoWrapper
from .renderer.synthesizer import TriplaneSynthesizer
class InstantNeRF(nn.Module):
"""Full model of the large reconstruction model."""
def __init__(
self,
encoder_freeze: bool = False,
encoder_model_name: str = 'facebook/dino-vitb16',
encoder_feat_dim: int = 768,
transformer_dim: int = 1024,
transformer_layers: int = 16,
transformer_heads: int = 16,
triplane_low_res: int = 32,
triplane_high_res: int = 64,
triplane_dim: int = 80,
rendering_samples_per_ray: int = 128,
):
super().__init__()
# modules
self.encoder = DinoWrapper(
model_name=encoder_model_name,
freeze=encoder_freeze,
)
self.transformer = TriplaneTransformer(
inner_dim=transformer_dim,
num_layers=transformer_layers,
num_heads=transformer_heads,
image_feat_dim=encoder_feat_dim,
triplane_low_res=triplane_low_res,
triplane_high_res=triplane_high_res,
triplane_dim=triplane_dim,
)
self.synthesizer = TriplaneSynthesizer(
triplane_dim=triplane_dim,
samples_per_ray=rendering_samples_per_ray,
)
def forward_planes(self, images, cameras):
# images: [B, V, C_img, H_img, W_img]
# cameras: [B, V, 16]
B = images.shape[0]
# encode images
image_feats = self.encoder(images, cameras)
image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B)
# transformer generating planes
planes = self.transformer(image_feats)
return planes
def forward(self, images, cameras, render_cameras, render_size: int):
# images: [B, V, C_img, H_img, W_img]
# cameras: [B, V, 16]
# render_cameras: [B, M, D_cam_render]
# render_size: int
_B, _M = render_cameras.shape[:2]
planes = self.forward_planes(images, cameras)
# render target views
render_results = self.synthesizer(planes, render_cameras, render_size)
return {
'planes': planes,
**render_results,
}
def get_texture_prediction(self, planes, tex_pos, hard_mask=None):
"""
Predict Texture given triplanes
:param planes: the triplane feature map
:param tex_pos: Position we want to query the texture field
:param hard_mask: 2D silhoueete of the rendered image.
"""
tex_pos = torch.cat(tex_pos, dim=0)
if hard_mask is not None:
tex_pos = tex_pos * hard_mask.float()
batch_size = tex_pos.shape[0]
tex_pos = tex_pos.reshape(batch_size, -1, 3)
###################
# We use mask to get the texture location (to save the memory)
if hard_mask is not None:
n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1)
sample_tex_pose_list = []
max_point = n_point_list.max()
expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5
for i in range(tex_pos.shape[0]):
tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3)
if tex_pos_one_shape.shape[1] < max_point:
tex_pos_one_shape = torch.cat(
[tex_pos_one_shape, torch.zeros(
1, max_point - tex_pos_one_shape.shape[1], 3,
device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1)
sample_tex_pose_list.append(tex_pos_one_shape)
tex_pos = torch.cat(sample_tex_pose_list, dim=0)
tex_feat = self.synthesizer.forward_points(planes, tex_pos)['rgb']
if hard_mask is not None:
final_tex_feat = torch.zeros(
planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device)
expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5
for i in range(planes.shape[0]):
final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1)
tex_feat = final_tex_feat
return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1])
def extract_mesh(
self,
planes: torch.Tensor,
mesh_resolution: int = 256,
mesh_threshold: int = 10.0,
use_texture_map: bool = False,
texture_resolution: int = 1024,
**kwargs,
):
"""
Extract a 3D mesh from triplane nerf. Only support batch_size 1.
:param planes: triplane features
:param mesh_resolution: marching cubes resolution
:param mesh_threshold: iso-surface threshold
:param use_texture_map: use texture map or vertex color
:param texture_resolution: the resolution of texture map.
"""
assert planes.shape[0] == 1
device = planes.device
grid_out = self.synthesizer.forward_grid(
planes=planes,
grid_size=mesh_resolution,
)
vertices, faces = mcubes.marching_cubes(
grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(),
mesh_threshold,
)
vertices = vertices / (mesh_resolution - 1) * 2 - 1
if not use_texture_map:
# query vertex colors
vertices_tensor = torch.tensor(vertices, dtype=torch.float32, device=device).unsqueeze(0)
vertices_colors = self.synthesizer.forward_points(
planes, vertices_tensor)['rgb'].squeeze(0).cpu().numpy()
vertices_colors = (vertices_colors * 255).astype(np.uint8)
return vertices, faces, vertices_colors
# use x-atlas to get uv mapping for the mesh
vertices = torch.tensor(vertices, dtype=torch.float32, device=device)
faces = torch.tensor(faces.astype(int), dtype=torch.long, device=device)
ctx = dr.RasterizeCudaContext(device=device)
uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap(
ctx, vertices, faces, resolution=texture_resolution)
tex_hard_mask = tex_hard_mask.float()
# query the texture field to get the RGB color for texture map
tex_feat = self.get_texture_prediction(
planes, [gb_pos], tex_hard_mask)
background_feature = torch.zeros_like(tex_feat)
img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask)
texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0)
return vertices, faces, uvs, mesh_tex_idx, texture_map
|