Spaces:
reon314
/
Runtime error

File size: 10,628 Bytes
3b6afc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
const Keyv = require('keyv');
// const { Agent, ProxyAgent } = require('undici');
const BaseClient = require('./BaseClient');
const {
  encoding_for_model: encodingForModel,
  get_encoding: getEncoding,
} = require('@dqbd/tiktoken');
const Anthropic = require('@anthropic-ai/sdk');

const HUMAN_PROMPT = '\n\nHuman:';
const AI_PROMPT = '\n\nAssistant:';

const tokenizersCache = {};

class AnthropicClient extends BaseClient {
  constructor(apiKey, options = {}, cacheOptions = {}) {
    super(apiKey, options, cacheOptions);
    cacheOptions.namespace = cacheOptions.namespace || 'anthropic';
    this.conversationsCache = new Keyv(cacheOptions);
    this.apiKey = apiKey || process.env.ANTHROPIC_API_KEY;
    this.sender = 'Anthropic';
    this.userLabel = HUMAN_PROMPT;
    this.assistantLabel = AI_PROMPT;
    this.setOptions(options);
  }

  setOptions(options) {
    if (this.options && !this.options.replaceOptions) {
      // nested options aren't spread properly, so we need to do this manually
      this.options.modelOptions = {
        ...this.options.modelOptions,
        ...options.modelOptions,
      };
      delete options.modelOptions;
      // now we can merge options
      this.options = {
        ...this.options,
        ...options,
      };
    } else {
      this.options = options;
    }

    const modelOptions = this.options.modelOptions || {};
    this.modelOptions = {
      ...modelOptions,
      // set some good defaults (check for undefined in some cases because they may be 0)
      model: modelOptions.model || 'claude-1',
      temperature: typeof modelOptions.temperature === 'undefined' ? 0.7 : modelOptions.temperature, // 0 - 1, 0.7 is recommended
      topP: typeof modelOptions.topP === 'undefined' ? 0.7 : modelOptions.topP, // 0 - 1, default: 0.7
      topK: typeof modelOptions.topK === 'undefined' ? 40 : modelOptions.topK, // 1-40, default: 40
      stop: modelOptions.stop, // no stop method for now
    };

    this.maxContextTokens = this.options.maxContextTokens || 99999;
    this.maxResponseTokens = this.modelOptions.maxOutputTokens || 1500;
    this.maxPromptTokens =
      this.options.maxPromptTokens || this.maxContextTokens - this.maxResponseTokens;

    if (this.maxPromptTokens + this.maxResponseTokens > this.maxContextTokens) {
      throw new Error(
        `maxPromptTokens + maxOutputTokens (${this.maxPromptTokens} + ${this.maxResponseTokens} = ${
          this.maxPromptTokens + this.maxResponseTokens
        }) must be less than or equal to maxContextTokens (${this.maxContextTokens})`,
      );
    }

    this.startToken = '||>';
    this.endToken = '';
    this.gptEncoder = this.constructor.getTokenizer('cl100k_base');

    if (!this.modelOptions.stop) {
      const stopTokens = [this.startToken];
      if (this.endToken && this.endToken !== this.startToken) {
        stopTokens.push(this.endToken);
      }
      stopTokens.push(`${this.userLabel}`);
      stopTokens.push('<|diff_marker|>');

      this.modelOptions.stop = stopTokens;
    }

    return this;
  }

  getClient() {
    if (this.options.reverseProxyUrl) {
      return new Anthropic({
        apiKey: this.apiKey,
        baseURL: this.options.reverseProxyUrl,
      });
    } else {
      return new Anthropic({
        apiKey: this.apiKey,
      });
    }
  }

  async buildMessages(messages, parentMessageId) {
    const orderedMessages = this.constructor.getMessagesForConversation(messages, parentMessageId);
    if (this.options.debug) {
      console.debug('AnthropicClient: orderedMessages', orderedMessages, parentMessageId);
    }

    const formattedMessages = orderedMessages.map((message) => ({
      author: message.isCreatedByUser ? this.userLabel : this.assistantLabel,
      content: message?.content ?? message.text,
    }));

    let identityPrefix = '';
    if (this.options.userLabel) {
      identityPrefix = `\nHuman's name: ${this.options.userLabel}`;
    }

    if (this.options.modelLabel) {
      identityPrefix = `${identityPrefix}\nYou are ${this.options.modelLabel}`;
    }

    let promptPrefix = (this.options.promptPrefix || '').trim();
    if (promptPrefix) {
      // If the prompt prefix doesn't end with the end token, add it.
      if (!promptPrefix.endsWith(`${this.endToken}`)) {
        promptPrefix = `${promptPrefix.trim()}${this.endToken}\n\n`;
      }
      promptPrefix = `\nContext:\n${promptPrefix}`;
    }

    if (identityPrefix) {
      promptPrefix = `${identityPrefix}${promptPrefix}`;
    }

    const promptSuffix = `${promptPrefix}${this.assistantLabel}\n`; // Prompt AI to respond.
    let currentTokenCount = this.getTokenCount(promptSuffix);

    let promptBody = '';
    const maxTokenCount = this.maxPromptTokens;

    const context = [];

    // Iterate backwards through the messages, adding them to the prompt until we reach the max token count.
    // Do this within a recursive async function so that it doesn't block the event loop for too long.
    // Also, remove the next message when the message that puts us over the token limit is created by the user.
    // Otherwise, remove only the exceeding message. This is due to Anthropic's strict payload rule to start with "Human:".
    const nextMessage = {
      remove: false,
      tokenCount: 0,
      messageString: '',
    };

    const buildPromptBody = async () => {
      if (currentTokenCount < maxTokenCount && formattedMessages.length > 0) {
        const message = formattedMessages.pop();
        const isCreatedByUser = message.author === this.userLabel;
        const messageString = `${message.author}\n${message.content}${this.endToken}\n`;
        let newPromptBody = `${messageString}${promptBody}`;

        context.unshift(message);

        const tokenCountForMessage = this.getTokenCount(messageString);
        const newTokenCount = currentTokenCount + tokenCountForMessage;

        if (!isCreatedByUser) {
          nextMessage.messageString = messageString;
          nextMessage.tokenCount = tokenCountForMessage;
        }

        if (newTokenCount > maxTokenCount) {
          if (!promptBody) {
            // This is the first message, so we can't add it. Just throw an error.
            throw new Error(
              `Prompt is too long. Max token count is ${maxTokenCount}, but prompt is ${newTokenCount} tokens long.`,
            );
          }

          // Otherwise, ths message would put us over the token limit, so don't add it.
          // if created by user, remove next message, otherwise remove only this message
          if (isCreatedByUser) {
            nextMessage.remove = true;
          }

          return false;
        }
        promptBody = newPromptBody;
        currentTokenCount = newTokenCount;
        // wait for next tick to avoid blocking the event loop
        await new Promise((resolve) => setImmediate(resolve));
        return buildPromptBody();
      }
      return true;
    };

    await buildPromptBody();

    if (nextMessage.remove) {
      promptBody = promptBody.replace(nextMessage.messageString, '');
      currentTokenCount -= nextMessage.tokenCount;
      context.shift();
    }

    const prompt = `${promptBody}${promptSuffix}`;
    // Add 2 tokens for metadata after all messages have been counted.
    currentTokenCount += 2;

    // Use up to `this.maxContextTokens` tokens (prompt + response), but try to leave `this.maxTokens` tokens for the response.
    this.modelOptions.maxOutputTokens = Math.min(
      this.maxContextTokens - currentTokenCount,
      this.maxResponseTokens,
    );

    return { prompt, context };
  }

  getCompletion() {
    console.log('AnthropicClient doesn\'t use getCompletion (all handled in sendCompletion)');
  }

  // TODO: implement abortController usage
  async sendCompletion(payload, { onProgress, abortController }) {
    if (!abortController) {
      abortController = new AbortController();
    }

    const { signal } = abortController;

    const modelOptions = { ...this.modelOptions };
    if (typeof onProgress === 'function') {
      modelOptions.stream = true;
    }

    const { debug } = this.options;
    if (debug) {
      console.debug();
      console.debug(modelOptions);
      console.debug();
    }

    const client = this.getClient();
    const metadata = {
      user_id: this.user,
    };

    let text = '';
    const requestOptions = {
      prompt: payload,
      model: this.modelOptions.model,
      stream: this.modelOptions.stream || true,
      max_tokens_to_sample: this.modelOptions.maxOutputTokens || 1500,
      metadata,
      ...modelOptions,
    };
    if (this.options.debug) {
      console.log('AnthropicClient: requestOptions');
      console.dir(requestOptions, { depth: null });
    }
    const response = await client.completions.create(requestOptions);

    signal.addEventListener('abort', () => {
      if (this.options.debug) {
        console.log('AnthropicClient: message aborted!');
      }
      response.controller.abort();
    });

    for await (const completion of response) {
      if (this.options.debug) {
        // Uncomment to debug message stream
        // console.debug(completion);
      }
      text += completion.completion;
      onProgress(completion.completion);
    }

    signal.removeEventListener('abort', () => {
      if (this.options.debug) {
        console.log('AnthropicClient: message aborted!');
      }
      response.controller.abort();
    });

    return text.trim();
  }

  // I commented this out because I will need to refactor this for the BaseClient/all clients
  // getMessageMapMethod() {
  //   return ((message) => ({
  //     author: message.isCreatedByUser ? this.userLabel : this.assistantLabel,
  //     content: message?.content ?? message.text
  //   })).bind(this);
  // }

  getSaveOptions() {
    return {
      promptPrefix: this.options.promptPrefix,
      modelLabel: this.options.modelLabel,
      ...this.modelOptions,
    };
  }

  getBuildMessagesOptions() {
    if (this.options.debug) {
      console.log('AnthropicClient doesn\'t use getBuildMessagesOptions');
    }
  }

  static getTokenizer(encoding, isModelName = false, extendSpecialTokens = {}) {
    if (tokenizersCache[encoding]) {
      return tokenizersCache[encoding];
    }
    let tokenizer;
    if (isModelName) {
      tokenizer = encodingForModel(encoding, extendSpecialTokens);
    } else {
      tokenizer = getEncoding(encoding, extendSpecialTokens);
    }
    tokenizersCache[encoding] = tokenizer;
    return tokenizer;
  }

  getTokenCount(text) {
    return this.gptEncoder.encode(text, 'all').length;
  }
}

module.exports = AnthropicClient;