Spaces:
Running
Running
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import pandas as pd | |
from src.about import Tasks, nc_tasks, nr_tasks, lp_tasks | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
## Leaderboard columns | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
#Scores | |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) | |
for task in Tasks: | |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
# Model information | |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) | |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) | |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) | |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) | |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) | |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) | |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
auto_eval_column_dict_nc = [] | |
auto_eval_column_dict_nc.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
auto_eval_column_dict_nc.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)]) | |
for task in nc_tasks: | |
auto_eval_column_dict_nc.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)]) | |
auto_eval_column_dict_nc.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_nc.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_nc.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_nc.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_nc.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)]) | |
#auto_eval_column_dict_nc.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)]) | |
AutoEvalColumn_NodeClassification = make_dataclass("AutoEvalColumn_NodeClassification", auto_eval_column_dict_nc, frozen=True) | |
auto_eval_column_dict_nr = [] | |
auto_eval_column_dict_nr.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
auto_eval_column_dict_nr.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)]) | |
for task in nr_tasks: | |
auto_eval_column_dict_nr.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)]) | |
auto_eval_column_dict_nr.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_nr.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_nr.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_nr.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_nr.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)]) | |
#auto_eval_column_dict_nr.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)]) | |
AutoEvalColumn_NodeRegression = make_dataclass("AutoEvalColumn_NodeRegression", auto_eval_column_dict_nr, frozen=True) | |
auto_eval_column_dict_lp = [] | |
auto_eval_column_dict_lp.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
auto_eval_column_dict_lp.append(["average_rank", ColumnContent, ColumnContent("Average Rank⬆️", "number", True)]) | |
for task in lp_tasks: | |
auto_eval_column_dict_lp.append(['_'.join(task.value.col_name.split('-')), ColumnContent, ColumnContent(task.value.benchmark, "number", True)]) | |
auto_eval_column_dict_lp.append(["author", ColumnContent, ColumnContent("Author", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_lp.append(["email", ColumnContent, ColumnContent("Email", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_lp.append(["Paper_URL", ColumnContent, ColumnContent("Paper URL", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_lp.append(["Github_URL", ColumnContent, ColumnContent("Github URL", "markdown", True, never_hidden=False)]) | |
auto_eval_column_dict_lp.append(["Time", ColumnContent, ColumnContent("Time", "markdown", True, never_hidden=False)]) | |
#auto_eval_column_dict_lp.append(["num_of_Params", ColumnContent, ColumnContent("# of Params", "markdown", True, never_hidden=False)]) | |
AutoEvalColumn_LinkPrediction = make_dataclass("AutoEvalColumn_LinkPrediction", auto_eval_column_dict_lp, frozen=True) | |
## For the queue columns in the submission tab | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
private = ColumnContent("private", "bool", True) | |
precision = ColumnContent("precision", "str", True) | |
weight_type = ColumnContent("weight_type", "str", "Original") | |
status = ColumnContent("status", "str", True) | |
## All the model information that we might need | |
class ModelDetails: | |
name: str | |
display_name: str = "" | |
symbol: str = "" # emoji | |
class ModelType(Enum): | |
PT = ModelDetails(name="pretrained", symbol="🟢") | |
FT = ModelDetails(name="fine-tuned", symbol="🔶") | |
IFT = ModelDetails(name="instruction-tuned", symbol="⭕") | |
RL = ModelDetails(name="RL-tuned", symbol="🟦") | |
Unknown = ModelDetails(name="", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
if "fine-tuned" in type or "🔶" in type: | |
return ModelType.FT | |
if "pretrained" in type or "🟢" in type: | |
return ModelType.PT | |
if "RL-tuned" in type or "🟦" in type: | |
return ModelType.RL | |
if "instruction-tuned" in type or "⭕" in type: | |
return ModelType.IFT | |
return ModelType.Unknown | |
class OFFICIAL(Enum): | |
official = ModelDetails("Official") | |
unofficial = ModelDetails("Unofficial") | |
class HONOR(Enum): | |
yes = ModelDetails("Yes") | |
no = ModelDetails("No") | |
class TASK_LIST(Enum): | |
amazon_user_churn = ModelDetails("rel-amazon-user-churn") | |
amazon_item_churn = ModelDetails("rel-amazon-item-churn") | |
amazon_user_ltv = ModelDetails("rel-amazon-user-ltv") | |
amazon_item_ltv = ModelDetails("rel-amazon-item-ltv") | |
amazon_user_item_purchase = ModelDetails("rel-amazon-user-item-purchase") | |
amazon_user_item_rate = ModelDetails("rel-amazon-user-item-rate") | |
amazon_user_item_review = ModelDetails("rel-amazon-user-item-review") | |
# rel-stack | |
stack_user_engagement = ModelDetails("rel-stack-user-engagement") | |
stack_user_badge = ModelDetails("rel-stack-user-badge") | |
stack_post_votes = ModelDetails("rel-stack-post-votes") | |
stack_user_post_comment = ModelDetails("rel-stack-user-post-comment") | |
stack_user_post_related = ModelDetails("rel-stack-user-post-related") | |
# rel-trial | |
trial_study_outcome = ModelDetails("rel-trial-study-outcome") | |
trial_study_adverse = ModelDetails("rel-trial-study-adverse") | |
trial_site_success = ModelDetails("rel-trial-site-success") | |
trial_condition_sponsor_run = ModelDetails("rel-trial-condition-sponsor-run") | |
trial_site_sponsor_run = ModelDetails("rel-trial-site-sponsor-run") | |
# rel-f1 | |
f1_driver_position = ModelDetails("rel-f1-driver-position") | |
f1_driver_dnf = ModelDetails("rel-f1-driver-dnf") | |
f1_driver_top3 = ModelDetails("rel-f1-driver-top3") | |
# rel-hm | |
hm_user_churn = ModelDetails("rel-hm-user-churn") | |
hm_item_sales = ModelDetails("rel-hm-item-sales") | |
hm_user_item_purchase = ModelDetails("rel-hm-user-item-purchase") | |
# rel-event | |
event_user_repeat = ModelDetails("rel-event-user-repeat") | |
event_user_ignore = ModelDetails("rel-event-user-ignore") | |
event_user_attendance = ModelDetails("rel-event-user-attendance") | |
# rel-avito | |
avito_user_visits = ModelDetails("rel-avito-user-visits") | |
avito_user_clicks = ModelDetails("rel-avito-user-clicks") | |
avito_ads_clicks = ModelDetails("rel-avito-ads-clicks") | |
avito_user_ad_visit = ModelDetails("rel-avito-user-ad-visit") | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
float32 = ModelDetails("float32") | |
#qt_8bit = ModelDetails("8bit") | |
#qt_4bit = ModelDetails("4bit") | |
#qt_GPTQ = ModelDetails("GPTQ") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
if precision in ["float32"]: | |
return Precision.float32 | |
#if precision in ["8bit"]: | |
# return Precision.qt_8bit | |
#if precision in ["4bit"]: | |
# return Precision.qt_4bit | |
#if precision in ["GPTQ", "None"]: | |
# return Precision.qt_GPTQ | |
return Precision.Unknown | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
COLS_NC = [c.name for c in fields(AutoEvalColumn_NodeClassification) if not c.hidden] | |
COLS_NR = [c.name for c in fields(AutoEvalColumn_NodeRegression) if not c.hidden] | |
COLS_LP = [c.name for c in fields(AutoEvalColumn_LinkPrediction) if not c.hidden] | |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] | |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
NUMERIC_INTERVALS = { | |
"?": pd.Interval(-1, 0, closed="right"), | |
"~1.5": pd.Interval(0, 2, closed="right"), | |
"~3": pd.Interval(2, 4, closed="right"), | |
"~7": pd.Interval(4, 9, closed="right"), | |
"~13": pd.Interval(9, 20, closed="right"), | |
"~35": pd.Interval(20, 45, closed="right"), | |
"~60": pd.Interval(45, 70, closed="right"), | |
"70+": pd.Interval(70, 10000, closed="right"), | |
} | |