File size: 5,896 Bytes
bcc0393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e646da
bcc0393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d020327
bcc0393
 
 
 
 
 
 
 
c81bbd5
 
 
 
 
a3f3a1f
bcc0393
 
 
 
 
 
 
 
 
 
21f6d56
08323cf
bcc0393
 
 
 
 
a3f3a1f
f5fe239
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

from torch.utils.data import DataLoader
from torchvision import transforms
import numpy as np
import pandas as pd
import os
import cv2
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torch
import torch.nn as nn


class HybridCNNViT(nn.Module):
    def __init__(self, in_channels: int, num_classes: int):
        super(HybridCNNViT, self).__init__()

        self.conv1 = nn.Conv2d(
            in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(64, 128, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(128)

        self.conv3 = nn.Conv2d(128, 128, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(128)

        self.conv4 = nn.Conv2d(128, 256, kernel_size=3,
                               stride=2, padding=1, bias=False)
        self.bn4 = nn.BatchNorm2d(256)

        self.conv5 = nn.Conv2d(256, 256, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn5 = nn.BatchNorm2d(256)

        self.conv6 = nn.Conv2d(256, 512, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn6 = nn.BatchNorm2d(512)

        self.conv7 = nn.Conv2d(512, 512, kernel_size=3,
                               stride=2, padding=1, bias=False)
        self.bn7 = nn.BatchNorm2d(512)

        # Optional MaxPooling (can be removed if strictly no max pooling)
        self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)

        self.classifier_conv = nn.Conv2d(
            512, num_classes, kernel_size=1, stride=1, padding=0, bias=False)

        self.classifier = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, 1)),
            nn.Flatten(),
            nn.Dropout(0.5)
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.relu(self.bn1(self.conv1(x)))
        x = self.relu(self.bn2(self.conv2(x)))
        x = self.relu(self.bn3(self.conv3(x)))
        x = self.relu(self.bn4(self.conv4(x)))
        x = self.relu(self.bn5(self.conv5(x)))
        x = self.relu(self.bn6(self.conv6(x)))
        x = self.relu(self.bn7(self.conv7(x)))

        x = self.maxpool(x)  # Comment this line if no max pooling is needed

        x = self.classifier_conv(x)
        x = self.classifier(x)

        return x


def load_and_pad_single_image(image_path, img_size=(224, 224)):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    img = cv2.imread(image_path)
    if img is None:
        raise ValueError(f"Could not read image: {image_path}")
    img = cv2.resize(img, img_size)
    return np.array(img)


def check_file(image_path):
    # image_path = "d/Control-Axial/C-A (2).png"

    # Load and preprocess the single image
    image = load_and_pad_single_image(image_path)
    image = np.expand_dims(image, axis=0)  # Convert to batch format

    # Duplicate the image 10 times
    data = np.repeat(image, 10, axis=0)

    # Normalize and transform the image
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[
                             0.229, 0.224, 0.225])
    ])

    data = torch.tensor(data, dtype=torch.float32).permute(
        0, 3, 1, 2).to(device)
    # Placeholder labels for 10 images
    labels = torch.tensor([0] * 10, dtype=torch.long).to(device)

    data, labels = shuffle(data, labels, random_state=42)

    train_data, test_data, train_labels, test_labels = train_test_split(
        data, labels, test_size=0.2, random_state=42
    )

    train_labels = torch.tensor(train_labels, dtype=torch.long)
    test_labels = torch.tensor(test_labels, dtype=torch.long)

    batch_size = 1  # Since we are working with a single image
    train_dataset = list(zip(train_data, train_labels))
    test_dataset = list(zip(test_data, test_labels))
    test_loader = DataLoader(
        test_dataset, batch_size=batch_size, shuffle=False)

    # Simple test with a model
    output = ""

    def test_model(model, test_loader, device):
        global output
        model.to(device)
        model.eval()
        with torch.no_grad():
            for images, labels in test_loader:
                images, labels = images.to(device), labels.to(device)
                outputs = model(images)
                _, predicted = torch.max(outputs.data, 1)
                output = predicted
                # Convert logits to probabilities
                probabilities = F.softmax(outputs, dim=1)
                # Get confidence score and prediction
                confidence, d = torch.max(probabilities, 1)
                print(confidence)
                return predicted, confidence

    def remove_module_from_checkpoint(checkpoint):
        new_state_dict = {}
        for key, value in checkpoint["model_state_dict"].items():
            new_key = key.replace("module.", "")
            new_state_dict[new_key] = value
        checkpoint["model_state_dict"] = new_state_dict
        return checkpoint

    model = HybridCNNViT(3, 2)
    checkpoint = torch.load(
        "/home/user/app/checkpoint32.pth", weights_only=False, map_location=torch.device('cpu'))
    checkpoint = remove_module_from_checkpoint(checkpoint)
    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval()
    model.to(device)
    model = nn.DataParallel(model)
    output, confidence = test_model(model, test_loader, device)
    return "No ms detected" if output.item() == 0 else "MS Detected", confidence.item()