File size: 2,698 Bytes
0af542d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import io

import gradio as gr
import librosa
import numpy as np
import soundfile
import torch
from inference.infer_tool import Svc
import logging

logging.getLogger('numba').setLevel(logging.WARNING)

model_name = "logs/32k/G_98000.pth"
config_name = "configs/config.json"

svc_model = Svc(model_name, config_name)
sid_map = {
    "Ztech": "Ztech"
}


def vc_fn(sid, input_audio, vc_transform):
    if input_audio is None:
        return "You need to upload an audio", None
    sampling_rate, audio = input_audio
    # print(audio.shape,sampling_rate)
    duration = audio.shape[0] / sampling_rate
    if duration > 45:
        return "请上传小于45s的音频,需要转换长音频请本地进行转换", None
    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio.transpose(1, 0))
    if sampling_rate != 16000:
        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
    print(audio.shape)
    out_wav_path = io.BytesIO()
    soundfile.write(out_wav_path, audio, 16000, format="wav")
    out_wav_path.seek(0)

    sid = sid_map[sid]
    out_audio, out_sr = svc_model.infer(sid, vc_transform, out_wav_path)
    _audio = out_audio.cpu().numpy()
    return "Success", (32000, _audio)


app = gr.Blocks()
with app:
    with gr.Tabs():
        with gr.TabItem("Basic"):
            gr.Markdown(value="""
                这是sovits 3.0 32khz版本ai草莓猫taffy的在线demo
                
                在使用此模型前请阅读[AI粘连科技模型使用协议](https://huggingface.co/spaces/reha/Stick_Tech/blob/main/terms.md)
                 
               粘连科技Official@bilibili:[点击关注](https://space.bilibili.com/248582596)
                
                如果要在本地使用该demo,请使用git lfs clone 该仓库,安装requirements.txt后运行app.py即可
                
                项目改写基于 https://huggingface.co/spaces/innnky/nyaru-svc-3.0
                
                本地合成可以删除26、27两行代码以解除合成45s长度限制""")
            sid = gr.Dropdown(label="音色", choices=["taffy"], value="taffy")
            vc_input3 = gr.Audio(label="上传音频(长度小于45秒)")
            vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
            vc_submit = gr.Button("转换", variant="primary")
            vc_output1 = gr.Textbox(label="Output Message")
            vc_output2 = gr.Audio(label="Output Audio")
        vc_submit.click(vc_fn, [sid, vc_input3, vc_transform], [vc_output1, vc_output2])

    app.launch()