File size: 8,575 Bytes
58bb4c7 1da768a 58bb4c7 1da768a fe4f734 1da768a 7da65a3 fe4f734 7da65a3 58bb4c7 fe4f734 58bb4c7 1da768a 7da65a3 58bb4c7 1da768a 58bb4c7 1da768a 58bb4c7 1da768a 58bb4c7 fe4f734 58bb4c7 1da768a 58bb4c7 1da768a 58bb4c7 1da768a 58bb4c7 1da768a 58bb4c7 1da768a 58bb4c7 fe4f734 58bb4c7 fe4f734 58bb4c7 1da768a 58bb4c7 1da768a 58bb4c7 1da768a 58bb4c7 1da768a fe4f734 58bb4c7 1da768a 58bb4c7 1da768a 58bb4c7 1da768a 58bb4c7 fe4f734 58bb4c7 fe4f734 58bb4c7 1da768a 7da65a3 1da768a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from pandas import DataFrame
from plotnine import (
ggplot,
aes,
geom_col,
geom_line,
annotate,
theme,
element_blank,
labs,
coord_flip,
scale_x_discrete,
scale_x_datetime,
scale_y_continuous,
theme_light,
)
class DataAvailabilityError(Exception):
"""Raised when not enough data available to vizualize."""
pass
def plot_NA(placeholder_text: str = "Not enough data available to visualize.", placeholder_size: int = 14):
"""Placeholder plot for when there is not enough data available to visualize.
"""
return (
ggplot()
+ annotate("text", x=0, y=0, label=placeholder_text, size=placeholder_size)
+ theme(axis_ticks=element_blank(), axis_text=element_blank(), panel_grid=element_blank())
+ labs(x="", y="", title="")
)
def generate_rule_axis_label(rule_types: list | None = None):
"""Generate axis label for rules, accounting for rule type ("all", "3f1-significant", or "other-significant").
"""
categories = ""
if (rule_types is None) or ("all" in rule_types):
pass
elif all(True if cat in rule_types else False for cat in ("3f1-significant", "other-significant")):
categories = "significant"
elif ("3f1-significant" in rule_types) and ("other-significant" not in rule_types):
categories = "Section 3(f)(1) Significant"
elif ("3f1-significant" not in rule_types) and ("other-significant" in rule_types):
categories = "Other Significant"
return f"Number of {categories} rules".replace(" ", " ")
def plot_agency(df, group_col = "acronym", value_col = "rules", color="#033C5A", rule_types: list | None = None):
"""Plot rules by agency.
Args:
df (DataFrame): Input data.
group_col (str, optional): Column on which the data are grouped. Defaults to "acronym".
value_col (str, optional): Column of values to be plotted. Defaults to "rules".
color (str, optional): Color of values in plot. Defaults to "#033C5A" ([GW Blue](https://communications.gwu.edu/visual-identity/color-palette)).
rule_types (list | None, optional): One or more rule types to include in plot. Accepts "all", "3f1-significant", or "other-significant". Defaults to None.
Returns:
ggplot: Plotted data.
"""
order_list = df.loc[:, group_col].to_list()[::-1]
y_lab = generate_rule_axis_label(rule_types)
plot = (
ggplot(
df,
aes(x=group_col, y=value_col),
)
+ geom_col(color="#FFFFFF", fill=color)
+ coord_flip()
+ scale_x_discrete(limits=order_list)
+ labs(y=y_lab, x="", title="Rules Published by Agency")
+ theme_light()
)
return plot
def plot_month(
df: DataFrame,
group_cols: tuple = ("publication_year", "publication_month"),
value_col: str = "rules",
color: str = "#033C5A",
title: str | None = None,
y_lab: str = "",
):
"""Plot rules by month.
Args:
df (DataFrame): Input data.
group_cols (tuple, optional): Columns on which the data are grouped. Defaults to ("publication_year", "publication_month").
value_col (str, optional): Column of values to be plotted. Defaults to "rules".
color (str, optional): Color of values in plot. Defaults to "#033C5A" ([GW Blue](https://communications.gwu.edu/visual-identity/color-palette)).
title (str | None, optional): Plot title. Defaults to None.
y_lab (str, optional): Plot y label. Defaults to "" (empty string).
Returns:
ggplot: Plotted data.
"""
df.loc[:, "ym"] = df[group_cols[0]].astype(str) + "-" + df[group_cols[1]].astype(str).str.pad(2, fillchar="0")
order_list = df.loc[:, "ym"].to_list()
if title is None:
title = "Rules Published by Month"
plot = (
ggplot(
df,
aes(x="ym", y=value_col),
)
+ geom_col(color="#FFFFFF", fill=color)
+ scale_x_discrete(limits=order_list)
+ labs(y=y_lab, x="", title=title)
+ theme_light()
)
return plot
def plot_day(
df: DataFrame,
group_col: str = "publication_date",
value_col: str = "rules",
color: str = "#033C5A",
title: str | None = None,
y_lab: str = "",
):
"""Plot rules by day.
Args:
df (DataFrame): Input data.
group_col (str, optional): Column on which the data are grouped. Defaults to "publication_date".
value_col (str, optional): Column of values to be plotted. Defaults to "rules".
color (str, optional): Color of values in plot. Defaults to "#033C5A" ([GW Blue](https://communications.gwu.edu/visual-identity/color-palette)).
title (str | None, optional): Plot title. Defaults to None.
y_lab (str, optional): Plot y label. Defaults to "" (empty string).
Returns:
ggplot: Plotted data.
"""
min_date = df.loc[:, group_col].min()
max_date = df.loc[:, group_col].max()
diff = (max_date - min_date).days
if diff in range(0, 61):
freq = "1 week"
elif diff in range(61, 91):
freq = "2 weeks"
else:
freq = "1 month"
max_value = df.loc[:, value_col].max()
if title is None:
title = "Rules Published by Date"
plot = (
ggplot(
df,
aes(x=group_col, y=value_col),
)
+ geom_line(group=1, color=color)
+ scale_x_datetime(date_breaks=freq, date_labels="%m-%d")
+ scale_y_continuous(limits=(0, max_value), expand=(0, 0, 0.1, 0))
+ labs(y=y_lab, x="", title=title)
+ theme_light()
)
return plot
def plot_week(
df: DataFrame,
group_col: str = "week_of",
value_col: str = "rules",
color: str = "#033C5A",
title: str | None = None,
y_lab: str = "",
show_significant: bool = False,
):
"""Plot rules by week.
Args:
df (DataFrame): Input data.
group_col (str, optional): Column on which the data are grouped. Defaults to "week_of".
value_col (str, optional): Column of values to be plotted. Defaults to "rules".
color (str, optional): Color of values in plot. Defaults to "#033C5A" ([GW Blue](https://communications.gwu.edu/visual-identity/color-palette)).
title (str | None, optional): Plot title. Defaults to None.
y_lab (str, optional): Plot y label. Defaults to "" (empty string).
Returns:
ggplot: Plotted data.
"""
max_value = df.loc[:, value_col].max()
date_values = df[group_col].to_list()
num_weeks = len(date_values)
if num_weeks in range(8, 16):
reduce_by = 2
elif num_weeks in range(16, 24):
reduce_by = 3
elif num_weeks in range(24, 32):
reduce_by = 4
elif num_weeks >= 32:
reduce_by = 5
else:
reduce_by = 1
breaks = [val for idx, val in enumerate(date_values) if idx % reduce_by == 0]
if title is None:
title = "Rules Published by Week"
plot = (
ggplot(
df,
aes(x=group_col, y=value_col),
)
+ geom_line(group=1, color=color)
+ scale_x_datetime(breaks=breaks, labels=[f"{w.strftime('%m-%d')}" for w in breaks])
+ scale_y_continuous(limits=(0, max_value), expand=(0, 0, 0.1, 0))
+ labs(y=y_lab, x="", title=title)
+ theme_light()
)
return plot
def plot_tf(df: DataFrame, frequency: str, rule_types: list | None = None, **kwargs) -> ggplot:
"""Plot rules over time by given frequency.
Args:
df (DataFrame): Input data.
frequency (str): Frequency of time for aggregating rules. Accepts "monthly" or "daily".
rule_types (list | None, optional): One or more rule types to include in plot. Accepts "all", "3f1-significant", or "other-significant". Defaults to None.
Raises:
ValueError: Frequency parameter received invalid value.
Returns:
ggplot: Plotted data.
"""
freq_options = {
"monthly": plot_month,
"daily": plot_day,
"weekly": plot_week,
}
plot_freq = freq_options.get(frequency, None)
if plot_freq is None:
raise ValueError(f"Frequency must be one of: {', '.join(freq_options.keys())}")
y_lab = generate_rule_axis_label(rule_types)
return plot_freq(df, y_lab=y_lab, **kwargs)
|