File size: 10,953 Bytes
bb93e21 e36a0a8 bb93e21 e36a0a8 bb93e21 e36a0a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
from datetime import date
from pathlib import Path
from fr_toolbelt.api_requests import get_documents_by_date
from fr_toolbelt.preprocessing import process_documents, AgencyMetadata
from numpy import array
from pandas import DataFrame, to_datetime
from plotnine import (
ggplot,
aes,
geom_col,
labs,
coord_flip,
scale_x_discrete,
theme_light,
)
try:
from search_columns import search_columns, SearchError
from significant import get_significant_info
except ModuleNotFoundError:
from .search_columns import search_columns, SearchError
from .significant import get_significant_info
METADATA, _ = AgencyMetadata().get_agency_metadata()
START_DATE = "2024-03-01"
GET_SIGNIFICANT = True if date.fromisoformat(START_DATE) >= date(2023, 4, 6) else False
class DataAvailabilityError(Exception):
pass
def get_date_range(start_date: str):
start_year = date.fromisoformat(start_date).year
end_year = start_year + 1
date_range = {
"start": start_date,
"end": f"{end_year}-01-31",
"transition_year": end_year,
}
return date_range
def get_rules(date_range: dict) -> list[dict]:
results, _ = get_documents_by_date(
start_date=date_range.get("start"),
end_date=date_range.get("end"),
document_types=("RULE", )
)
return results
def format_documents(documents: list[dict]):
"""Format Federal Register documents to generate count by presidential year.
Args:
documents (list[dict]): List of documents.
Returns:
DataFrame: Pandas DataFrame with formatted data.
"""
# process agency info in documents
documents = process_documents(
documents,
which=("agencies", "presidents"),
return_values_as_str=False
)
# create dataframe
df = DataFrame(documents)
# convert publication date to datetime format
df.loc[:, "publication_dt"] = to_datetime(df["publication_date"])
df.loc[:, "publication_date"] = df.apply(lambda x: x["publication_dt"].date(), axis=1)
df.loc[:, "publication_year"] = df.apply(lambda x: x["publication_dt"].year, axis=1)
df.loc[:, "publication_month"] = df.apply(lambda x: x["publication_dt"].month, axis=1)
df.loc[:, "publication_day"] = df.apply(lambda x: x["publication_dt"].day, axis=1)
# return dataframe
return df
def filter_new_admin_rules(
df: DataFrame,
transition_year: int,
date_col: str = "publication_date",
):
admin_transitions = {
2001: "george-w-bush",
2009: "barack-obama",
2017: "donald-trump",
2021: "joe-biden",
}
bool_date = array(df[date_col] >= date(transition_year, 1, 20))
bool_prez = array(df["president_id"] == admin_transitions.get(transition_year))
bool_ = bool_date & bool_prez
return df.loc[~bool_]
def filter_corrections(df: DataFrame):
"""Filter out corrections from Federal Register documents.
Identifies corrections using `corrrection_of` field and regex searches of `document_number`, `title`, and `action` fields.
Args:
df (DataFrame): Federal Register data.
Returns:
tuple: DataFrame with corrections removed, DataFrame of corrections
"""
# get original column names
cols = df.columns.tolist()
# filter out corrections
# 1. Using correction fields
bool_na = array(df["correction_of"].isna())
# 2. Searching other fields
search_1 = search_columns(df, [r"^[crxz][\d]{1,2}-(?:[\w]{2,4}-)?[\d]+"], ["document_number"],
return_column="indicator1")
search_2 = search_columns(df, [r"(?:;\scorrection\b)|(?:\bcorrecting\samend[\w]+\b)"], ["title", "action"],
return_column="indicator2")
bool_search = array(search_1["indicator1"] == 1) | array(search_2["indicator2"] == 1)
# separate corrections from non-corrections
df_no_corrections = df.loc[(bool_na & ~bool_search), cols] # remove flagged documents
df_corrections = df.loc[(~bool_na | bool_search), cols]
# return filtered results
if len(df) == len(df_no_corrections) + len(df_corrections):
return df_no_corrections, df_corrections
else:
raise SearchError(f"{len(df)} != {len(df_no_corrections)} + {len(df_corrections)}")
def get_significant_rules(df, start_date):
process_columns = ("significant", "3f1_significant", )
if date.fromisoformat(start_date) < date(2023, 4, 6):
raise DataAvailabilityError("This program does not calculate significant rule counts prior to Executive Order 14094 of April 6, 2023.")
else:
document_numbers = df.loc[:, "document_number"].to_list()
df, last_updated = get_significant_info(df, start_date, document_numbers)
for col in process_columns:
bool_na = df[col].isna()
df.loc[bool_na, col] = "0"
df.loc[:, col] = df[col].replace(".", "0").astype("int64")
bool_3f1 = df["3f1_significant"] == 1
bool_sig = df["significant"] == 1
df.loc[:, "3f1_significant"] = 0
df.loc[bool_3f1, "3f1_significant"] = 1
df.loc[:, "other_significant"] = 0
df.loc[(bool_sig & ~bool_3f1), "other_significant"] = 1
return df, last_updated
def get_agency_metadata_values(
df: DataFrame,
agency_column: str,
metadata: dict,
metadata_value: str,
):
if metadata_value == "acronym":
metadata_value = "short_name"
return df.loc[:, agency_column].apply(
lambda x: metadata.get(x, {}).get(metadata_value)
)
def groupby_agency(
df: DataFrame,
group_col: str = "parent_slug",
value_col: str = "document_number",
aggfunc: str = "count",
significant: bool = True,
metadata: dict | None = None,
metadata_value: str = "acronym",
):
aggfunc_dict = {value_col: aggfunc, }
if significant:
aggfunc_dict.update({
"3f1_significant": "sum",
"other_significant": "sum",
})
df_ex = df.explode(group_col, ignore_index=True)
grouped = df_ex.groupby(
by=group_col
).agg(
aggfunc_dict
).reset_index()
grouped = grouped.sort_values(value_col, ascending=False).rename(
columns={
group_col: "agency",
value_col: "rules",
}, errors="ignore"
)
if metadata is not None:
grouped.loc[:, metadata_value] = get_agency_metadata_values(
grouped,
agency_column="agency",
metadata=metadata,
metadata_value=metadata_value
)
cols = ["agency", metadata_value, "rules", "3f1_significant", "other_significant"]
grouped = grouped.loc[:, [c for c in cols if c in grouped.columns]]
return grouped
def groupby_ym(
df: DataFrame,
group_col: tuple | list = ("publication_year", "publication_month", ),
value_col: str = "document_number",
aggfunc: str = "count",
significant: bool = True
):
aggfunc_dict = {value_col: aggfunc, }
if significant:
aggfunc_dict.update({
"3f1_significant": "sum",
"other_significant": "sum",
})
grouped = df.groupby(
by=list(group_col)
).agg(
aggfunc_dict
).reset_index()
grouped = grouped.rename(columns={
value_col: "rules",
}, errors="ignore")
return grouped
def save_csv(path: Path, df_all: DataFrame, df_agency: DataFrame, df_ym: DataFrame, transition_year: int):
files = (
f"rules_{transition_year - 1}_{transition_year}.csv",
f"rules_by_agency_{transition_year - 1}_{transition_year}.csv",
f"rules_by_month_{transition_year - 1}_{transition_year}.csv"
)
dataframes = (df_all, df_agency, df_ym)
for data, file in zip(dataframes, files):
data.to_csv(path / file, index=False)
def plot_agency(df, group_col = "acronym", value_col = "rules"):
order_list = df.loc[:, group_col].to_list()[::-1]
plot = (
ggplot(
df,
aes(x=group_col, y=value_col),
)
+ geom_col()
+ coord_flip()
+ scale_x_discrete(limits=order_list)
+ labs(y="", x="", title="Number of Rules Published by Agency")
+ theme_light()
)
return plot
def plot_month(df, group_cols = ("publication_year", "publication_month"), value_col = "rules"):
df.loc[:, "ym"] = df[group_cols[0]].astype(str) + "-" + df[group_cols[1]].astype(str).str.pad(2, fillchar="0")
order_list = df.loc[:, "ym"].to_list()
plot = (
ggplot(
df,
aes(x="ym", y=value_col),
)
+ geom_col()
+ scale_x_discrete(limits=order_list)
+ labs(y="", x="", title="Number of Rules Published by Month")
+ theme_light()
)
return plot
def get_rules_in_window(start_date: str, get_significant: bool = True):
date_range = get_date_range(start_date)
transition_year = date_range.get("transition_year")
results = get_rules(date_range)
df = format_documents(results)
df, _ = filter_corrections(df)
df = filter_new_admin_rules(df, transition_year)
if get_significant:
df, last_updated = get_significant_rules(df, start_date)
else:
last_updated = date.today()
return df, last_updated
def get_list_agencies(start_date, agency_column: str = "agency", metadata: dict | None = None, significant: bool = True):
df, _ = get_rules_in_window(start_date, get_significant=significant)
df_agency = groupby_agency(df, metadata=metadata, significant=significant)
print(df_agency.columns)
return sorted(list(set(df_agency.loc[df_agency[agency_column].notna(), agency_column].to_list())))
def main(start_date, save_data: bool = True, path: Path | None = None, metadata: dict | None = None, significant: bool = True):
if date.fromisoformat(start_date) < date(2023, 4, 6):
significant = False
date_range = get_date_range(start_date)
transition_year = date_range.get("transition_year")
df, _ = get_rules_in_window(start_date, get_significant=significant)
df_agency = groupby_agency(df, metadata=metadata, significant=significant)
df_ym = groupby_ym(df, significant=significant)
if save_data:
if path is None:
path = Path(__file__).parent
save_csv(path, df, df_agency, df_ym, transition_year)
return df, df_agency, df_ym
DF, LAST_UPDATED = get_rules_in_window(START_DATE, get_significant=GET_SIGNIFICANT)
AGENCIES = get_list_agencies(START_DATE, metadata=METADATA, significant=GET_SIGNIFICANT)
if __name__ == "__main__":
print(DF.columns)
print(LAST_UPDATED)
|