File size: 17,503 Bytes
22d0a3b
 
 
bb93e21
 
58bb4c7
bb93e21
22d0a3b
 
bb93e21
58bb4c7
bb93e21
 
 
58bb4c7
bb93e21
 
64cb2a0
 
bb93e21
58bb4c7
fe4f734
58bb4c7
bb93e21
58bb4c7
22d0a3b
761e2b2
64cb2a0
bb93e21
 
 
 
 
22d0a3b
 
58bb4c7
4ea4f4c
22d0a3b
bb93e21
4ea4f4c
22d0a3b
bd042b8
4ea4f4c
22d0a3b
f6ecdd2
22d0a3b
58bb4c7
 
5a39d37
58bb4c7
 
 
 
22d0a3b
 
4ea4f4c
 
22d0a3b
 
 
4ea4f4c
164c6c1
4ea4f4c
164c6c1
22d0a3b
 
 
 
64cb2a0
22d0a3b
 
 
 
 
 
 
 
58bb4c7
 
22d0a3b
f6ecdd2
58bb4c7
 
22d0a3b
82bf3a2
 
f520ef1
22d0a3b
82bf3a2
 
 
a085631
82bf3a2
f6ecdd2
 
fe4f734
22d0a3b
64cb2a0
 
62aa5e5
64cb2a0
f6ecdd2
 
 
58bb4c7
22d0a3b
bb93e21
e945d64
2858954
e945d64
 
 
 
 
bb93e21
e945d64
 
 
 
 
 
 
 
 
 
 
 
2858954
e945d64
e425048
 
 
 
2858954
e425048
 
bb93e21
22d0a3b
bb93e21
 
 
e945d64
 
 
bd042b8
e945d64
 
 
 
 
 
 
 
 
761e2b2
c7e3855
 
 
e945d64
 
a0bdec0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58bb4c7
bb93e21
28879b8
e945d64
bb93e21
 
58bb4c7
 
 
 
 
 
 
 
 
22d0a3b
58bb4c7
 
 
22d0a3b
7da65a3
58bb4c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761e2b2
28879b8
58bb4c7
 
bb93e21
22d0a3b
bb93e21
 
 
 
 
 
 
 
10d7fca
 
 
 
 
 
 
 
 
 
 
 
bd042b8
 
10d7fca
 
 
761e2b2
c7e3855
 
10d7fca
 
64cb2a0
bd042b8
 
 
c7e3855
bb93e21
c7e3855
bb93e21
22d0a3b
bb93e21
 
 
 
 
5a39d37
dc37ff1
64cb2a0
78c2c24
f520ef1
5a39d37
79c222e
 
 
5a39d37
bb93e21
 
 
22d0a3b
bb93e21
 
 
 
 
 
 
 
 
393578a
bb93e21
82bf3a2
761e2b2
64cb2a0
761e2b2
e6cbeaa
bb93e21
82bf3a2
bb93e21
82bf3a2
 
e6cbeaa
 
10d7fca
393578a
e6cbeaa
64cb2a0
 
 
 
 
c7e3855
64cb2a0
c7e3855
64cb2a0
 
bd042b8
 
 
 
 
 
 
 
 
 
22d0a3b
 
 
 
 
 
 
 
bd042b8
22d0a3b
bb93e21
 
58bb4c7
e6cbeaa
 
bd042b8
58bb4c7
 
 
 
 
 
bd042b8
58bb4c7
 
 
 
 
 
 
 
 
28879b8
 
58bb4c7
 
 
 
 
 
bd042b8
fe4f734
58bb4c7
 
 
 
 
 
 
 
 
28879b8
 
58bb4c7
 
28879b8
bb93e21
 
e6cbeaa
bb93e21
 
64cb2a0
bb93e21
 
e6cbeaa
 
58bb4c7
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# ----- IMPORTS ----- #


import asyncio
from datetime import datetime, date, time
from pathlib import Path

from pandas import DataFrame
from numpy import array

from modules import (
    DF, 
    LAST_UPDATED, 
    START_DATE, 
    WINDOW_OPEN_DATE, 
    GET_SIGNIFICANT, 
    METADATA, 
    AGENCIES,
    CRA_LAST_UPDATED,  
    groupby_agency, 
    groupby_date, 
    add_week_info_to_data, 
    pad_missing_dates, 
    plot_agency, 
    plot_tf, 
    plot_NA, 
    plot_NA,
    get_rd
    )

from shiny import reactive
from shiny.express import input, render, ui

# load css styles from external file
ui.include_css( Path(__file__).parent.joinpath("www") / "style.css")


# ----- CREATE OBJECTS ----- #


# this text appears in the browser tab
TITLE = "CRA Window Exploratory Dashboard - GW Regulatory Studies Center"

# page header above main content
HEADER = "Congressional Review Act (CRA) Window Exploratory Dashboard"
page_header = ui.HTML(
    f"""
    <div class="header">
        <h1>{HEADER}</h1>
    </div>
    """
    )

# logo at the top of the sidebar
sidebar_logo = ui.HTML(
    f"""
    <div class="header">
        <a href="https://go.gwu.edu/regstudies" target="_blank">
        <img src="logo.png" alt="Regulatory Studies Center logo"/>        
        </a>
    </div>
    """
    )

# footer at the bottom of the page
FOOTER = f"""
    -----
    
    &copy; {date.today().year} [GW Regulatory Studies Center](https://go.gwu.edu/regstudies). See our page on the [Congressional Review Act](https://regulatorystudies.columbian.gwu.edu/congressional-review-act) for more information.
    """


# ----- APP LAYOUT ----- #


ui.tags.title(TITLE)

page_header

# sidebar settings
with ui.sidebar(open={"desktop": "open", "mobile": "closed"}, fg="#033C5A"):
    sidebar_logo

    with ui.tooltip(placement="right", id="window_tooltip"):
        ui.input_date("start_date", "Select start of window", value=WINDOW_OPEN_DATE, 
                      min=START_DATE, max=datetime(date.fromisoformat(WINDOW_OPEN_DATE).year+1,1,3))
        "The CRA lookback window opens on August 16, 2024. Select a different date to explore how different lookback dates would affect the set of rules available for congressional review. See the notes for more information."

    with ui.tooltip(placement="right", id="window_end_tooltip"):
        ui.input_date("end_date", "Select end of window", value=datetime(date.fromisoformat(WINDOW_OPEN_DATE).year+1,1,3), 
                      min=datetime(date.fromisoformat(WINDOW_OPEN_DATE).year+1,1,3), max=datetime(date.fromisoformat(WINDOW_OPEN_DATE).year+1,1,20))
        "The default end date of the CRA lookback window is set to January 3, when the next session of Congress begins. You may select a different date, up to January 20, to explore rules published between the end of the previous session of Congress and the inauguration date (if applicable)."

    with ui.tooltip(placement="right", id="sig_tooltip"):
        ui.input_select("menu_significant", "Select rule significance", choices=["all", "3f1-significant", "other-significant"], selected="all", multiple=True, size=3)
        "Rule significance as defined in Executive Order 12866, as amended by Executive Order 14094."

    with ui.tooltip(placement="right", id="cra_tooltip"):
        ui.input_select("menu_cra_target", "Select CRA target status", choices=["all", "CRA targeted", "Not CRA targeted"], selected="all", multiple=True, size=3)
        f"Whether the 119th Congress has introduced a joint resolution of disapproval (RD) targeting a rule (data last updated {CRA_LAST_UPDATED})."

    with ui.tooltip(placement="right", id="agency_tooltip"):
        ui.input_select("menu_agency", "Select agencies", choices=["all"] + AGENCIES, selected=["all"], multiple=True, size=6)
        "Select one or more parent-level agencies."

# value boxes with summary data
with ui.layout_column_wrap():
    with ui.value_box(class_="summary-values"):
        "All final rules"
        with ui.tooltip(placement="bottom", id="all_tooltip"):
            @render.text
            def count_rules():
                return f"{filtered_df()['document_number'].count()}"
            f"Federal Register data last retrieved {date.today()}."
    
    with ui.value_box(class_="summary-values"):
        "Section 3(f)(1) Significant rules"
        with ui.tooltip(placement="bottom", id="3f1_tooltip"):
            @render.text
            def count_3f1_significant():
                output = "Not available"
                if GET_SIGNIFICANT:
                    output = f"{filtered_df()['3f1_significant'].sum()}"
                return output
            f"Executive Order 12866 significance data last updated {LAST_UPDATED}."

    with ui.value_box(class_="summary-values"):
        "Other Significant rules"
        with ui.tooltip(placement="bottom", id="other_tooltip"):
            @render.text
            def count_other_significant():
                output = "Not available"
                if GET_SIGNIFICANT:
                    output = f"{filtered_df()['other_significant'].sum()}"
                return output
            f"Executive Order 12866 significance data last updated {LAST_UPDATED}."

# main content
with ui.navset_card_underline(title=""):
    
    with ui.nav_panel("Rules in detail"):
        with ui.card(full_screen=True):
            @render.data_frame
            def table_rule_detail():
                df = filter_significance().copy()
                df.loc[:, "date"] = df.loc[:, "publication_date"].apply(lambda x: f"{x.date()}")
                char, limit = " ", 10
                df.loc[:, "title"] = df["title"].apply(lambda x: x if len(x.split(char)) < (limit + 1) else f"{char.join(x.split(char)[:limit])}...")
                df.loc[:, "agencies"] = df["parent_slug"].apply(lambda x: "; ".join(x))
                cols = [
                    "date", 
                    "title", 
                    "agencies", 
                    "3f1_significant", 
                    "other_significant",
                    "CRA_Target",
                    "Latest_CRA_Stage",
                    "RD_No",
                    ]
                return render.DataGrid(df.loc[:, [c for c in cols if c in df.columns]], width="100%")

    with ui.nav_panel("By agency"):
        
        with ui.layout_columns():
            
            with ui.card(full_screen=True):
                @render.plot
                def plot_by_agency():
                    grouped = grouped_df_agency()
                    if len(grouped) < 2:
                        return plot_NA()
                    else:
                        plot = plot_agency(
                                grouped.head(10), 
                                rule_types=input.menu_significant(), 
                                )
                        return plot

            with ui.card(full_screen=True):
                @render.data_frame
                def table_by_agency():
                    grouped = grouped_df_agency()
                    cols = [
                        "agency", 
                        "acronym",
                        "rules",
                        "3f1_significant", 
                        "other_significant",
                        "cra_targeted",
                        ]
                    return render.DataTable(grouped.loc[:, [c for c in cols if c in grouped.columns]])

    with ui.nav_panel("Over time"):
        
        ui.input_select("frequency", "Select frequency", choices=["daily", "weekly", "monthly"], selected="monthly")
        
        with ui.layout_columns():
        
            with ui.card(full_screen=True):
                
                @render.plot
                def plot_over_time(value_col: str = "rules"):
                    grouped = get_grouped_data_over_time()
                    values = grouped.loc[:, value_col].to_numpy()
                    count_gte_zero = sum(1 if g > 0 else 0 for g in values)
                    max_val = max(values, default=0)
                    if (max_val < 2) or (count_gte_zero < 2):
                        return plot_NA()
                    else:
                        return plot_tf(
                            grouped, 
                            input.frequency(), 
                            rule_types=input.menu_significant(),
                            )
            
            with ui.card(full_screen=True):
                @render.data_frame
                def table_over_time():
                    grouped = get_grouped_data_over_time()
                    date_cols = ["publication_date", "week_of", ]
                    if any(d in grouped.columns for d in date_cols):
                        grouped = grouped.astype({d: "str" for d in date_cols if d in grouped.columns}, errors="ignore")
                    grouped = grouped.rename(columns={
                        "publication_year": "year", 
                        "publication_month": "month", 
                        "publication_date": "date", 
                        }, errors="ignore")
                    cols = [
                        "date", 
                        "year", 
                        "month", 
                        "week_of", 
                        "rules",
                        "3f1_significant", 
                        "other_significant",
                        "cra_targeted",
                        ]
                    return render.DataTable(grouped.loc[:, [c for c in cols if c in grouped.columns]])

# download data
with ui.accordion(open=False):
    
    with ui.accordion_panel("Download Data"):
        
        @render.download(
            label="Download data as CSV",
            filename=f"rules_in_cra_window_accessed_{date.today()}.csv",
        )
        async def download(
            output_cols: tuple | list = (
                "document_number", 
                "citation", 
                "publication_date", 
                "title", 
                "type", 
                "action", 
                "json_url", 
                "html_url", 
                "agencies", 
                "independent_reg_agency", 
                "parent_agencies", 
                "subagencies", 
                "president_id", 
                "significant", 
                "3f1_significant", 
                "other_significant",
                "CRA_Target",
                "Latest_CRA_Stage",
                )
            ):
            filt_df = filter_significance().copy()
            filt_df.loc[:, "agencies"] = filt_df.loc[:, "agency_slugs"].apply(lambda x: "; ".join(x))
            filt_df.loc[:, "parent_agencies"] = filt_df.loc[:, "parent_slug"].apply(lambda x: "; ".join(x))
            filt_df.loc[:, "subagencies"] = filt_df.loc[:, "subagency_slug"].apply(lambda x: "; ".join(x))
            rd_cols=[col for col in filt_df.columns if col.startswith('RD') and '_' in col and col.split('_')[0][2:].isdigit()]
            await asyncio.sleep(0.25)
            yield filt_df.loc[:, [c for c in list(output_cols)+rd_cols if c in filt_df.columns]].to_csv(index=False)

# notes
with ui.accordion(open=False):
    
    with ui.accordion_panel("Notes"):
        
        ui.markdown(
            f"""            
            This dashboard allows users to explore how different [Congressional Review Act](https://uscode.house.gov/view.xhtml?req=granuleid%3AUSC-prelim-title5-chapter8&saved=%7CKHRpdGxlOjUgc2VjdGlvbjo4MDEgZWRpdGlvbjpwcmVsaW0pIE9SIChncmFudWxlaWQ6VVNDLXByZWxpbS10aXRsZTUtc2VjdGlvbjgwMSk%3D%7CdHJlZXNvcnQ%3D%7C%7C0%7Cfalse%7Cprelim&edition=prelim) (CRA) lookback window dates would affect the set of rules available for congressional review and tracks resolutions for disapproval (RDs) targeting the rules published within this window. 
            The “lookback window” refers to the period starting [60 working days](https://crsreports.congress.gov/product/pdf/R/R46690#page=8) (either session days in the Senate or legislative days in the House of Representatives) before the current session of Congress adjourns and ending the day the subsequent session of Congress first convenes. 
            Rules that are published in the Federal Register and submitted to Congress after the lookback day are made available for review in the subsequent session of Congress. 
            The current lookback date is [August 16, 2024](https://www.congress.gov/congressional-record/volume-171/issue-18/house-section/article/H398-8). 
            
            "Section 3(f)(1) significant" rules are regulations that meet the criteria in Section 3(f)(1) of [Executive Order 12866](https://www.archives.gov/files/federal-register/executive-orders/pdf/12866.pdf), as amended by [Executive Order 14094](https://www.govinfo.gov/content/pkg/FR-2023-04-11/pdf/2023-07760.pdf), referring to those with an estimated annual effect on the economy of $200 million or more.
            "Other significant" rules are regulations that meet the other criteria in Section 3(f) of Executive Order 12866, as amended by Executive Order 14094, such as those creating inconsistency with other agencies' actions, altering certain budgetary impacts, or raising legal or policy issues pertaining to the president's priorities.

            Rule data are retrieved daily from the [Federal Register API](https://www.federalregister.gov/developers/documentation/api/v1), which publishes new editions of the Federal Register each business day. 
            """
            )

# footer citation
ui.markdown(
    FOOTER
)


# ----- REACTIVE CALCULATIONS ----- #


@reactive.calc
def filtered_df(agency_column: str = "parent_slug"):
    filt_df = DF

    # merge with RD data
    filt_df = get_rd(filt_df)

    # filter dates
    try:
        filt_df = filt_df.loc[(filt_df["publication_date"] >= input.start_date()) & (filt_df["publication_date"] <= input.end_date())]
    except TypeError:
        filt_df = filt_df.loc[(filt_df["publication_date"] >= datetime.combine(input.start_date(), time(0, 0))) & 
                              (filt_df["publication_date"] <= datetime.combine(input.end_date(), time(0, 0)))]
    
    # filter agencies
    if (input.menu_agency() is not None) and ("all" not in input.menu_agency()):
        bool_agency = [True if sum(selected in agency for selected in input.menu_agency()) > 0 else False for agency in filt_df[agency_column]]
        filt_df = filt_df.loc[bool_agency]

    # filter CRA target status
    bool_cra = []
    if (input.menu_cra_target() is not None) and ("all" not in input.menu_cra_target()):
        if "CRA targeted" in input.menu_cra_target():
            bool_cra.append((filt_df["CRA_Target"] == 1).to_numpy())
        if "Not CRA targeted" in input.menu_cra_target():
            bool_cra.append((filt_df["CRA_Target"] == 0).to_numpy())
        filt_df = filt_df.loc[array(bool_cra).any(axis=0)]

    # return filtered dataframe
    return filt_df


@reactive.calc
def filter_significance():

    # get data filtered by date and agency
    filt_df = filtered_df()

    # filter significance
    bool_ = []
    if (input.menu_significant() is not None) and ("all" not in input.menu_significant()):
        if "3f1-significant" in input.menu_significant():
            bool_.append((filt_df["3f1_significant"] == 1).to_numpy())
        if "other-significant" in input.menu_significant():
            bool_.append((filt_df["other_significant"] == 1).to_numpy())
        filt_df = filt_df.loc[array(bool_).any(axis=0)]

    # return filtered dataframe
    return filt_df


@reactive.calc
def grouped_df_month():
    filt_df = filter_significance()
    grouped = groupby_date(filt_df, significant=GET_SIGNIFICANT)
    return grouped


@reactive.calc
def grouped_df_day():
    filt_df = filter_significance()
    date_col = "publication_date"
    grouped = groupby_date(filt_df, group_col=date_col, significant=GET_SIGNIFICANT)
    grouped = pad_missing_dates(
        grouped, 
        date_col, 
        "days", 
        fill_padded_values={
            "rules": 0, 
            "3f1_significant": 0, 
            "other_significant": 0,
            "cra_targeted":0, 
            })
    return grouped


@reactive.calc
def grouped_df_week():
    filt_df = filter_significance()
    filt_df = add_week_info_to_data(filt_df)
    try:
        grouped = groupby_date(filt_df, group_col=("week_number", "week_of"), significant=GET_SIGNIFICANT)
        grouped = pad_missing_dates(
            grouped, 
            "week_of", 
            how="weeks", 
            fill_padded_values={
                "rules": 0, 
                "3f1_significant": 0, 
                "other_significant": 0,
                "cra_targeted":0 
                })
    except KeyError as err:
        grouped = DataFrame(columns=["week_number", "week_of", "rules", "3f1_significant", "other_significant","cra_targeted"])
    return grouped


@reactive.calc
def grouped_df_agency():
    filt_df=filter_significance()
    grouped = groupby_agency(filt_df, metadata=METADATA, significant=GET_SIGNIFICANT)
    return grouped


@reactive.calc
def get_grouped_data_over_time():
    if input.frequency() == "daily":
        grouped = grouped_df_day()
    elif input.frequency() == "monthly":
        grouped = grouped_df_month()
    elif input.frequency() == "weekly":
        grouped = grouped_df_week()
    else:
        raise ValueError("Only 'daily', 'monthly', or 'weekly' are valid inputs.")
    return grouped