Spaces:
Runtime error
Runtime error
File size: 5,796 Bytes
4602937 fada25c 4615482 4602937 fada25c 4602937 2b44908 fada25c 2b44908 fada25c 2b44908 fada25c 3430157 fada25c 2b44908 fada25c 2b44908 fada25c 6dd9499 fada25c 6dd9499 fada25c 6dd9499 fada25c 2b44908 fada25c 2b44908 fada25c 2b44908 fada25c 6dd9499 fada25c 2b44908 fada25c 6dd9499 ddc78b4 6dd9499 fada25c 448c3da 0a5200d 5f6f331 0a5200d 5f6f331 0a5200d 448c3da 0a5200d 448c3da 0a5200d 448c3da 0a5200d 448c3da 5f6f331 448c3da 5f6f331 0a5200d 448c3da 0a5200d 5f6f331 0a5200d 5f6f331 0a5200d 5f6f331 0a5200d 5f6f331 448c3da 0a5200d 5f6f331 448c3da 0a5200d 448c3da 5f6f331 0a5200d 448c3da 0a5200d 1740daa 448c3da 0a5200d 5f6f331 448c3da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
from dotenv import load_dotenv
import gradio as gr
import os
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
# Load environment variables
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Variable to store current chat conversation
current_chat_history = []
def data_ingestion_from_directory():
# Use SimpleDirectoryReader on the directory containing the PDF files
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
# Update current chat history
current_chat_history.append((query, response))
return response
# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()
# Define the function to handle predictions
def predict(message,history):
response = handle_query(message)
return response
# Create the chat interface with a custom layout function
css = '''
/* Style the chat container */
.gradio-container {
display: flex;
flex-direction: column;
width: 450px;
margin: 0 auto;
padding: 20px;
border: 1px solid #ddd;
border-radius: 10px;
background-color: #fff;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
position: relative;
height: 600px; /* Adjust the height of the container */
}
/* Style the logo */
.gradio-logo {
display: flex;
justify-content: center;
margin-bottom: 20px;
}
.gradio-logo img {
width: 100%;
max-width: 300px;
}
/* Style the title */
.gradio-title {
text-align: center;
font-weight: bold;
font-size: 24px;
margin-bottom: 20px;
color: #4A90E2;
}
/* Style the chat history */
.gradio-chat-history {
flex: 1;
overflow-y: auto;
padding: 15px;
border-bottom: 1px solid #ddd;
background-color: #f9f9f9;
border-radius: 5px;
margin-bottom: 10px;
max-height: 500px; /* Increase the height of the chat history */
}
/* Style the chat messages */
.gradio-message {
margin-bottom: 15px;
display: flex;
flex-direction: column; /* Stack messages vertically */
}
.gradio-message.user .gradio-message-content {
background-color: #E1FFC7;
align-self: flex-end;
border: 1px solid #c3e6cb;
border-radius: 15px 15px 0 15px;
padding: 10px;
font-size: 16px;
margin-bottom: 5px;
max-width: 80%;
}
.gradio-message.bot .gradio-message-content {
background-color: #fff;
align-self: flex-start;
border: 1px solid #ced4da;
border-radius: 15px 15px 15px 0;
padding: 10px;
font-size: 16px;
margin-bottom: 5px;
max-width: 80%;
}
.gradio-message-content {
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
/* Style the footer */
.gradio-footer {
display: flex;
padding: 10px;
border-top: 1px solid #ddd;
background-color: #F8D7DA; /* Light red background color */
position: absolute;
bottom: 0;
width: calc(100% - 40px); /* Adjust width to match container padding */
}
/* Remove Gradio footer */
footer {
display: none !important;
background-color: #F8D7DA;
}
'''
# Create a custom HTML block for the logo
logo_html = '''
<div class="gradio-logo">
<img src="https://redfernstech.com/wp-content/uploads/2024/05/RedfernsLogo_FinalV1.0-3-2048x575.png" alt="Company Logo">
</div>
'''
# Create a Blocks layout with the custom HTML and ChatInterface
with gr.Blocks(theme=gr.themes.Monochrome(), fill_height=True,css=css) as demo:
gr.HTML(logo_html)
gr.ChatInterface(predict)
# Launch the interface
demo.launch()
|