File size: 12,559 Bytes
8f074bc
432b263
6ae14d4
 
8f074bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432b263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d0d868
 
6ae14d4
8d0d868
 
 
 
 
 
 
 
 
 
6ae14d4
8d0d868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432b263
6ae14d4
 
 
 
 
 
 
 
 
 
 
 
b821ff2
 
6ae14d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f885c11
6ae14d4
 
 
 
 
 
 
 
 
b821ff2
6ae14d4
b821ff2
 
6ae14d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f885c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb13684
f885c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb13684
 
 
 
 
 
 
 
 
 
 
 
 
 
f885c11
bb13684
f885c11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import pandas as pd
from typing import Tuple
import numpy as np
import plotly.graph_objects as go
import re

_NEG_COLOR = "red"

def format_large_number(n, decimals=2):
    if n >= 1e12:
        return f'{n / 1e12:.{decimals}f} T'
    elif n >= 1e9:
        return f'{n / 1e9:.{decimals}f} B'
    elif n >= 1e6:
        return f'{n / 1e6:.{decimals}f} M'
    else:
        return str(n)

def format_results(df: pd.DataFrame, rename_columns: dict) -> pd.DataFrame:
    # Índice 100
    if "ind_sust" in df.columns:
        df["ind_sust"] = df["ind_sust"].apply(lambda x: "-" if pd.isna(x) else int(round(x * 100, 0)))
    # 1 decimal
    for col in ["trailingPE", "beta"]:
        if col in df.columns:
            df[col] = df[col].apply(lambda x: "-" if pd.isna(x) else f"{x:.1f}")

    # 2 decimales
    if "Search dist." in df.columns:
        df["Search dist."] = df["Search dist."].apply(lambda n: "-" if pd.isna(n) else f"{n:.2f}")

    # Cantidades monetarias grandes
    if "marketCap" in df.columns:
        df["marketCap"] = df["marketCap"].apply(lambda n: "-" if pd.isna(n) else format_large_number(n, 1))
    # Porcentajes 1 decimal
    for col in ["ret_365", "revenueGrowth"]:
        if col in df.columns:
            df[col] = df[col].apply(lambda x: "-" if pd.isna(x) or x == 0 else f"{(x * 100):.1f}%")
    # Porcentajes 1 decimal (porcentaje numérico en fuente)
    for col in ["dividendYield"]:
        if col in df.columns:
            df[col] = df[col].apply(lambda x: "-" if pd.isna(x) else f"{round(x, 1)}%")
    # Volatilidad
    if "vol_365" in df.columns:
        df["vol_365"] = df["vol_365"].apply(lambda x: "-" if pd.isna(x) or x == 0 else f"{x:.4f}")

    # Devolvemos el dataframe con los nombres de columnas renombrados
    return df.rename(columns=rename_columns)


def random_ticker(df: pd.DataFrame) -> str:
    return df["ticker"].sample(n=1).values[0]

def styler_negative_red(df: pd.DataFrame, cols: list[str] | None = None):
    """
    Returns a Styler that paints negative numeric values in *cols*.
    Columns absent in *df* are ignored.
    """
    cols = [c for c in (cols or df.columns) if c in df.columns]

    def _style(v):
        try:
            num = float(re.sub(r"[ %,TMB]", "", str(v)))
            if num < 0:
                return f"color:{_NEG_COLOR}"
        except ValueError:
            pass
        return ""

    return df.style.applymap(_style, subset=cols)

def get_company_info(
    maestro: pd.DataFrame,
    ticker: str,
    rename_columns: dict
) -> Tuple[str, str, pd.DataFrame]:
    """
    Returns the company name, longBusinessSummary, and a DataFrame
    of all other fields for the given ticker.
    """
    company = maestro[maestro["ticker"] == ticker]
    if company.empty:
        return ticker, "No data available.", pd.DataFrame()

    # extract name & summary
    name = company["security"].iloc[0] if "security" in company.columns else ticker
    summary = company["longBusinessSummary"].iloc[0] if "longBusinessSummary" in company.columns else ""

    # build details table
    details = company.drop(columns=["longBusinessSummary"], errors="ignore").iloc[0]
    df = pd.DataFrame({
        "Field": details.index.tolist(),
        "Value": details.values.tolist()
    })
    df["Field"] = df["Field"].map(lambda c: rename_columns.get(c, c))

    # Round _norm fields to 3 decimal places
    for i, field in enumerate(df["Field"]):
        if field.endswith("norm."):
            value = df.iloc[i]["Value"]
            if isinstance(value, (int, float)) and not pd.isna(value):
                df.iloc[i, df.columns.get_loc("Value")] = round(value, 3)
        # Process numeric fields using format_results function
        # Extract numeric fields (excluding already processed _norm fields)
        numeric_fields = []
        numeric_values = []
        numeric_indices = []
        
        for i, (display_field, value) in enumerate(zip(df["Field"], df["Value"])):
            if not display_field.endswith("norm.") and isinstance(value, (int, float)) and not pd.isna(value):
                # Get original field name using inverse rename dictionary
                orig_field = next((k for k, v in rename_columns.items() if v == display_field), display_field)
                numeric_fields.append(orig_field)
                numeric_values.append(value)
                numeric_indices.append(i)
        
        if numeric_fields:
            # Create a single-row dataframe with original field names
            temp_df = pd.DataFrame([numeric_values], columns=numeric_fields)
            
            # Apply format_results function
            formatted_df = format_results(temp_df, rename_columns)
            
            # Put formatted values back into the original dataframe
            for i, field in zip(numeric_indices, numeric_fields):
                display_field = rename_columns.get(field, field)
                df.iloc[i, df.columns.get_loc("Value")] = formatted_df.iloc[0][display_field]
        

    return name, summary, df


def spider_plot(df: pd.DataFrame) -> None:
    spider_plot_cols = ['Beta norm.', 'Debt to Equity norm.', '1-year Return norm.', 'Revenue Growth norm.', 'Volatility norm.']
    plot_data = df[df['Field'].isin(spider_plot_cols)].set_index('Field')
    values = plot_data.loc[spider_plot_cols, 'Value'].fillna(0.5).astype(float).tolist()
    metrics_to_invert = ['Debt to Equity norm.', 'Beta norm.', 'Volatility norm.']
    values = [1 - v if col in metrics_to_invert else v for v, col in zip(values, spider_plot_cols)]
    categories = [s.replace(' norm.', '').replace('1-year', '1yr').replace('Debt to Equity', 'D/E') for s in spider_plot_cols]
    fig = go.Figure()

    fig.add_trace(go.Scatterpolar(
        r=values + [values[0]],
        theta=categories + [categories[0]],
        fill='toself',
        name='Company Profile'
    ))

    fig.add_trace(go.Scatterpolar(
        r=[0.5] * len(categories) + [0.5], # Append the first r value to close the loop
        theta=categories + [categories[0]], # Append the first theta value to close the loop
        mode='lines',
        line=dict(dash='dot', color='grey'),
        fill='toself', # Keep fill='none' if you only want the line
        fillcolor='rgba(0,0,0,0)', # Make fill transparent if only line is desired
        name='Median (0.5)'
    ))

    legend_text = (
        "<b>Quantile Scale: 0 to 1</b><br>"
        "D/E, Beta, and Volatility:<br>"
        "0 is highest, 1 is lowest<br>"
        "Rev. growth and 1yr return:<br>"
        "0 is lowest, 1 is highest<br>"
    )

    fig.update_layout(
    polar=dict(
        radialaxis=dict(
        visible=True,
        range=[0, 1]  # Set the range from 0 to 1
        )),
    showlegend=True,
    title='Normalized Company Metrics',
    annotations=[
            go.layout.Annotation(
                text=legend_text,
                align='right',
                showarrow=False,
                xref='paper',
                yref='paper',
                x=1.41, 
                y=-0.1 
            )
        ],
        margin=dict(b=120),
        width=600,
        height=500
    )

    fig.show()


# Create a new function in app_utils.py that returns the figure instead of showing it
def get_spider_plot_fig_v0(df: pd.DataFrame):
    spider_plot_cols = ['Beta norm.', 'Debt to Equity norm.', '1-year Return norm.', 'Revenue Growth norm.', 'Volatility norm.']
    plot_data = df[df['Field'].isin(spider_plot_cols)].set_index('Field')
    values = plot_data.loc[spider_plot_cols, 'Value'].fillna(0.5).astype(float).tolist()
    metrics_to_invert = ['Debt to Equity norm.', 'Beta norm.', 'Volatility norm.']
    values = [1 - v if col in metrics_to_invert else v for v, col in zip(values, spider_plot_cols)]
    categories = [s.replace(' norm.', '').replace('1-year', '1yr').replace('Debt to Equity', 'D/E') for s in spider_plot_cols]
    company_name = df.loc[df['Field'] == 'Name', 'Value'].values[0]
    fig = go.Figure()


    fig.add_trace(go.Scatterpolar(
        r=values + [values[0]],
        theta=categories + [categories[0]],
        fill='toself',
        name='Company Profile'
    ))

    fig.add_trace(go.Scatterpolar(
        r=[0.5] * len(categories) + [0.5], # Append the first r value to close the loop
        theta=categories + [categories[0]], # Append the first theta value to close the loop
        mode='lines',
        line=dict(dash='dot', color='grey'),
        fill='toself', # Keep fill='none' if you only want the line
        fillcolor='rgba(0,0,0,0)', # Make fill transparent if only line is desired
        name='Median (0.5)'
    ))

    legend_text = (
        "<b>Quantile Scale: 0 to 1</b><br>"
        "D/E, Beta, and Volatility:<br>"
        "0 is highest, 1 is lowest<br>"
        "Rev. growth and 1yr return:<br>"
        "0 is lowest, 1 is highest<br>"
    )

    fig.update_layout(
    polar=dict(
        radialaxis=dict(
        visible=True,
        range=[0, 1]  # Set the range from 0 to 1
        )),
    showlegend=True,
    title=f'{company_name} - Normalized Metrics',
    annotations=[
            go.layout.Annotation(
                text=legend_text,
                align='right',
                showarrow=False,
                xref='paper',
                yref='paper',
                x=1.41, 
                y=-0.1 
            )
        ],
        margin=dict(b=120),
        width=600,
        height=500
    )

    return fig  


def get_spider_plot_fig(df: pd.DataFrame):
    spider_plot_cols = ['Beta norm.', 'Debt to Equity norm.', '1-year Return norm.', 'Revenue Growth norm.', 'Volatility norm.']
    plot_data = df[df['Field'].isin(spider_plot_cols)].set_index('Field')
    values = plot_data.loc[spider_plot_cols, 'Value'].fillna(0.5).astype(float).tolist()
    metrics_to_invert = ['Debt to Equity norm.', 'Beta norm.', 'Volatility norm.']
    values = [1 - v if col in metrics_to_invert else v for v, col in zip(values, spider_plot_cols)]
    
    # Calculate average strength score
    avg_strength = round(np.mean(values) * 100)
    
    # Determine color based on score
    if avg_strength < 30:
        profile_color = 'red'
    elif avg_strength < 50:
        profile_color = 'gold'
    elif avg_strength < 60:
        profile_color = 'blue'
    else:
        profile_color = 'green'
    
    categories = [s.replace(' norm.', '').replace('1-year', '1yr').replace('Debt to Equity', 'D/E') for s in spider_plot_cols]
    company_name = df.loc[df['Field'] == 'Name', 'Value'].values[0]
    fig = go.Figure()

    fig.add_trace(go.Scatterpolar(
        r=values + [values[0]],
        theta=categories + [categories[0]],
        fill='toself',
        name='Company Profile',
        line=dict(color=profile_color),
        fillcolor=f'rgba({",".join(["255,0,0,0.2" if profile_color == "red" else "255,215,0,0.2" if profile_color == "gold" else "0,0,255,0.2" if profile_color == "blue" else "0,128,0,0.2"])})'
    ))

    fig.add_trace(go.Scatterpolar(
        r=[0.5] * len(categories) + [0.5],
        theta=categories + [categories[0]],
        mode='lines',
        line=dict(dash='dot', color='grey'),
        fill='toself',
        fillcolor='rgba(0,0,0,0)',
        name='Median (0.5)'
    ))

    # Determine strength level text based on score
    if avg_strength < 30:
        strength_level = "very low"
        text_color = "red"
    elif avg_strength < 50:
        strength_level = "low"
        text_color = "gold"
    elif avg_strength < 60:
        strength_level = "medium"
        text_color = "blue"
    else:
        strength_level = "high"
        text_color = "green"
        
    legend_text = (
        f"<b>Avg. strength: {avg_strength}</b> (<span style='color:{text_color}'>{strength_level}</span>)<br><br>"
        "<b>Quantile Scale: 0 to 1</b><br>"
        "D/E, Beta, and Volatility:<br>"
        "0 is highest, 1 is lowest<br>"
        "Rev. growth and 1yr return:<br>"
        "0 is lowest, 1 is highest<br>"
    )

    fig.update_layout(
    polar=dict(
        radialaxis=dict(
        visible=True,
        range=[0, 1]
        )),
    showlegend=True,
    title=f'{company_name} - Normalized Metrics',
    annotations=[
            go.layout.Annotation(
                text=legend_text,
                align='right',
                showarrow=False,
                xref='paper',
                yref='paper',
                x=1.41, 
                y=-0.1 
            )
        ],
        margin=dict(b=120),
        width=600,
        height=500
    )

    return fig