File size: 26,831 Bytes
b51b4a2 8d0d868 b51b4a2 e6c7897 b51b4a2 e6c7897 b51b4a2 e6c7897 b51b4a2 e6c7897 b51b4a2 e6c7897 8d0d868 e6c7897 8d0d868 e6c7897 8d0d868 e6c7897 6ae14d4 e6c7897 b7c1a3a e6c7897 0d07c63 e6c7897 0d07c63 e6c7897 b7c1a3a e6c7897 0d07c63 e6c7897 0d07c63 e6c7897 8d0d868 e6c7897 8d0d868 962c7a2 8d0d868 e6c7897 8d0d868 e6c7897 8d0d868 6ae14d4 8d0d868 6ae14d4 8d0d868 962c7a2 8d0d868 962c7a2 6ae14d4 962c7a2 6ae14d4 8d0d868 6ae14d4 962c7a2 8d0d868 962c7a2 8d0d868 6ae14d4 e6c7897 962c7a2 8d0d868 e6c7897 8d0d868 dd2dd68 8d0d868 962c7a2 6ae14d4 8d0d868 962c7a2 8d0d868 6ae14d4 e6c7897 8d0d868 6ae14d4 8d0d868 962c7a2 6ae14d4 8d0d868 6ae14d4 962c7a2 8d0d868 6ae14d4 8d0d868 6ae14d4 8d0d868 6ae14d4 8d0d868 e6c7897 962c7a2 e6c7897 8d0d868 e6c7897 962c7a2 e6c7897 8d0d868 e6c7897 8d0d868 e6c7897 8d0d868 e6c7897 8d0d868 962c7a2 6ae14d4 8d0d868 6ae14d4 8d0d868 6ae14d4 8d0d868 e6c7897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
'''
Swift Stock Screener (SSS)
Copyright 2025 David González Romero
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
App URL: https://huggingface.co/spaces/reddgr/sss
'''
### DEBUGGING COMMAND (DGR):
# cd C:\Users\david\Documents\git\miax-tfm-dgr; python app.py
from pathlib import Path
from typing import Tuple
import pandas as pd
import gradio as gr
import json
import duckdb
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
USE_DOTENV = False
ROOT = Path(__file__).parent
JSON_PATH = ROOT / "json"
DATASET_PATH = "reddgr/swift-stock-screener" # Hugging Face hub dataset name
EMB_MODEL_PATH = "FinLang/finance-embeddings-investopedia" # Hugging Face Hub embeddings model name
DOTENV_PATH = ROOT.parent.parent / "apis" / ".env"
PARQUET_PATH = ROOT / "parquet" / "app_dataset.parquet"
# DUCKDB_PATH = ROOT / "db" / "sss_vectordb.duckdb"
from src import front_dataset_handler as fdh, app_utils as utils, semantic_search as ss, env_options
tokens = env_options.check_env(use_dotenv=USE_DOTENV, dotenv_path=DOTENV_PATH, env_tokens = ["HF_TOKEN"])
emb_model = SentenceTransformer(EMB_MODEL_PATH, token = tokens.get("HF_TOKEN"))
#### CONEXIÓN DE DUCKDB CON EL DATASET PARA INDEXAR ####
print("Initializing DuckDB connection...")
con = duckdb.connect()
create_table_query = f"""
INSTALL vss;
LOAD vss;
SET hnsw_enable_experimental_persistence = true;
CREATE TABLE vector_table AS
SELECT *, embeddings::float[{emb_model.get_sentence_embedding_dimension()}] as embeddings_float
FROM '{PARQUET_PATH}';
"""
con.sql(create_table_query)
print("Indexing data for vector search...")
create_index_query = f"""
CREATE INDEX sss_hnsw_index ON vector_table USING HNSW (embeddings_float) WITH (metric = 'cosine');
"""
con.sql(create_index_query)
# ESTADO GLOBAL
last_result_df: pd.DataFrame = pd.DataFrame()
last_search_type: str = ""
last_search_query: str = ""
last_column_filters: list[tuple[str, str]] = []
last_sort_col_label: str = ""
last_sort_dir: str = ""
selected_ticker: str = ""
# ---------------------------------------------------------------------------
# CONFIG --------------------------------------------------------------------
# ---------------------------------------------------------------------------
app_dataset = load_dataset(DATASET_PATH, split="train", token = tokens.get("HF_TOKEN")).to_pandas()
dh_app = fdh.FrontDatasetHandler(app_dataset=app_dataset)
maestro = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='EQUITY'].copy()
print("maestro_columns", maestro.columns.to_list())
maestro_etf = dh_app.app_dataset[dh_app.app_dataset['quoteType']=='ETF'].copy()
with open(JSON_PATH / "app_column_config.json", "r") as f:
variables_busq_norm = json.load(f)["variables_busq_norm"]
with open(JSON_PATH / "app_column_config.json", "r") as f:
caracteristicas = json.load(f)["cols_tabla_equity"]
with open(JSON_PATH / "app_column_config.json", "r") as f:
caracteristicas_etf = json.load(f)["cols_tabla_etfs"]
with open(JSON_PATH / "app_column_config.json", "r") as f:
company_details_cols = json.load(f)["company_details_cols"]
with open(JSON_PATH / "cat_cols.json", "r") as f:
cat_cols = json.load(f)["cat_cols"]
with open(JSON_PATH / "col_names_map.json", "r") as f:
rename_columns = json.load(f)["col_names_map"]
with open(JSON_PATH / "gamma_params.json", "r") as f:
gamma_params = json.load(f)
with open(JSON_PATH / "semantic_search_params.json", "r") as f:
semantic_search_params = json.load(f)["semantic_search_params"]
# Columnas a estilizar en rojo si son negativas
neg_display_cols = [rename_columns.get(c, c)
for c in ("ret_365", "revenueGrowth")]
# Parámetros de la función de distribución de distancias:
shape, loc, scale = gamma_params["shape"], gamma_params["loc"], gamma_params["scale"]
max_dist, precision_cdf = gamma_params["max_dist"], gamma_params["precision_cdf"]
y_cdf, _ = dh_app.configura_distr_prob(shape, loc, scale, max_dist, precision_cdf)
# Parámetros de búsqueda VSS:
k = semantic_search_params["k"]
brevity_penalty = semantic_search_params["brevity_penalty"]
min_length = semantic_search_params["min_length"]
reward_for_literal = semantic_search_params["reward_for_literal"]
first_term_reward = semantic_search_params["first_term_reward"]
partial_match_factor = semantic_search_params["partial_match_factor"]
print(f"VSS params: k={k}, brevity_penalty={brevity_penalty}, reward_for_literal={reward_for_literal}, partial_match_factor={partial_match_factor}", end="")
print(f", min_length={min_length}, first_term_reward={first_term_reward}")
filtros_keys = caracteristicas[2:]
MAX_ROWS = 13000
ROWS_PER_PAGE = 100
# ---------------------------------------------------------------------------
# FUNCIONES UI --------------------------------------------------------------
# ---------------------------------------------------------------------------
# Dejamos en este módulo (en lugar de app_utils) funciones específicas de gestión de la interfaz
def _paginate(df: pd.DataFrame, page: int, per_page: int = ROWS_PER_PAGE) -> Tuple[pd.DataFrame, str]:
total_pages = max(1, (len(df) + per_page - 1) // per_page)
page = max(1, min(page, total_pages))
slice_df = df.iloc[(page-1)*per_page : (page-1)*per_page + per_page]
slice_df = utils.styler_negative_red(slice_df, cols=neg_display_cols)
return slice_df, f"Page {page} of {total_pages}"
def search_dynamic(ticker: str, page: int, *filtros_values) -> Tuple[pd.DataFrame, str]:
global last_result_df
ticker = ticker.upper().strip()
if ticker == "":
last_result_df = pd.DataFrame()
return pd.DataFrame(), "Page 1 of 1"
filtros = dict(zip(filtros_keys, filtros_values))
neighbors_df = dh_app.vecinos_cercanos(
df=maestro,
variables_busq=variables_busq_norm,
caracteristicas=caracteristicas,
target_ticker=ticker,
y_cdf=y_cdf,
precision_cdf=precision_cdf,
max_dist=max_dist,
n_neighbors=len(maestro),
filtros=filtros,
)
if isinstance(neighbors_df, str):
last_result_df = pd.DataFrame()
return pd.DataFrame(), "Page 1 de 1"
neighbors_df.reset_index(inplace=True)
neighbors_df.drop(columns=["distance"], inplace=True)
# neighbors_df = format_results(neighbors_df)
neighbors_df = utils.format_results(neighbors_df, rename_columns)
last_result_df = neighbors_df.head(MAX_ROWS).copy()
return _paginate(last_result_df, page)
def search_theme(theme: str, page: int, *filtros_values) -> Tuple[pd.DataFrame, str]:
global last_result_df
query = theme.strip()
if query == "":
last_result_df = pd.DataFrame()
return pd.DataFrame(), "Page 1 of 1"
# Llamada al algoritmo de búsqueda, que devuelve un dataframe con k activos:
result_df = ss.duckdb_vss_local(
model=emb_model,
duckdb_connection=con,
query=query,
k=k,
brevity_penalty=brevity_penalty,
min_length = min_length,
reward_for_literal=reward_for_literal,
first_term_reward=first_term_reward,
partial_match_factor=partial_match_factor,
table_name="vector_table",
embedding_column="embeddings"
)
theme_dist = result_df[['ticker', 'distance']].rename(columns={'distance': 'Search dist.'})
# Cruzamos el dataframe de distancias con el maestro y mantenemos las columnas originales:
clean_feats = [c for c in caracteristicas if c != 'ticker']
# indexamos por ticker para cruzar las tablas:
maestro_subset = maestro.set_index('ticker')[clean_feats]
merged = theme_dist.set_index('ticker').join(maestro_subset, how='inner').reset_index()
# Reordenamos las columnas y añadimos la distancia:
ordered_cols = ['ticker'] + clean_feats + ['Search dist.']
merged = merged[ordered_cols]
# Ajustamos los formatos de las columnas:
formatted = utils.format_results(merged, rename_columns)
last_result_df = formatted.head(MAX_ROWS).copy()
return _paginate(last_result_df, page)
def _compose_summary() -> str:
parts = []
if last_search_type == "theme":
parts.append(f"Theme search for '{last_search_query}'")
elif last_search_type == "ticker":
parts.append(f"Ticker search for '{last_search_query}'")
if last_column_filters:
fstr = ", ".join(f"{col} = '{val}'" for col, val in last_column_filters)
parts.append(f"Filters: {fstr}")
if last_sort_col_label:
parts.append(f"Sorted by: {last_sort_col_label} ({last_sort_dir})")
return ". ".join(parts)
def search_all(theme: str, ticker: str, page: int) -> tuple[pd.DataFrame,str,str,str,str]:
global last_search_type, last_search_query, last_column_filters
last_column_filters.clear()
if theme.strip():
last_search_type, last_search_query = "theme", theme.strip()
df, label = search_theme(theme, page)
# new_ticker, new_theme = "", theme.strip()
new_ticker, new_theme = "", "" # limpia las cajas de búsqueda
elif ticker.strip():
last_search_type, last_search_query = "ticker", ticker.strip().upper()
df, label = search_dynamic(ticker, page)
# new_ticker, new_theme = last_search_query, ""
new_ticker, new_theme = "", ""
else:
df, label = _paginate(last_result_df, page)
new_ticker, new_theme = "", ""
summary = _compose_summary()
return df, label, new_ticker, new_theme, summary
def page_change(theme: str, ticker: str, page: int) -> tuple[pd.DataFrame,str,str,str,str]:
return search_all(theme, ticker, page)
# ---------------------------------------------------------------------------
# SORTING -------------------------------------------------------------------
# ---------------------------------------------------------------------------
def apply_sort(col_label: str, direction: str) -> tuple[pd.DataFrame, str, int, str]:
global last_sort_col_label, last_sort_dir, last_search_type, last_search_query, last_column_filters, last_result_df
# record selection and clear previous state
last_sort_col_label, last_sort_dir = col_label or "", direction or ""
last_search_type = last_search_query = ""
last_column_filters.clear()
# reload raw data
df_raw = maestro[caracteristicas].head(MAX_ROWS).copy()
# sort on original data column if specified
if col_label:
# reverse lookup original column key
inv_map = {v: k for k, v in rename_columns.items()}
orig_col = inv_map.get(col_label, col_label)
asc = (direction == "Ascending")
df_raw = df_raw.sort_values(
by=orig_col,
ascending=asc,
na_position='last'
).reset_index(drop=True)
# apply existing formatting helpers
df_formatted = utils.format_results(df_raw, rename_columns)
# update global and paginate
last_result_df = df_formatted.copy()
slice_df, label = _paginate(last_result_df, 1)
summary = f"Sorted by: {col_label} ({direction})" if col_label else ""
return slice_df, label, 1, summary
def reset_initial() -> tuple[pd.DataFrame,str,int,str,str,str]:
global last_search_type, last_search_query, last_column_filters, last_sort_col_label, last_sort_dir, last_result_df
last_search_type = last_search_query = ""
last_column_filters.clear()
last_sort_col_label = last_sort_dir = ""
last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
slice_df, label = _paginate(last_result_df, 1)
default_sort = rename_columns.get("marketCap","marketCap")
return slice_df, label, 1, "", "", default_sort, ""
# ---------------------------------------------------------------------------
# DATOS INICIALES -----------------------------------------------------------
# ---------------------------------------------------------------------------
#last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
#_initial_slice, _initial_label = _paginate(last_result_df, 1)
last_result_df = utils.format_results(maestro[caracteristicas].head(MAX_ROWS).copy(), rename_columns)
_initial_slice, _initial_label = _paginate(last_result_df, 1)
# Ticker por defecto es el primero de la lista
if not last_result_df.empty:
selected_ticker = last_result_df.iloc[0][rename_columns.get('ticker','ticker')]
# Fetch initial company info
if selected_ticker:
maestro_details = maestro[company_details_cols].copy()
init_name, init_summary, init_details = utils.get_company_info(maestro_details, selected_ticker, rename_columns)
else:
init_name, init_summary, init_details = "", "", pd.DataFrame()
# ---------------------------------------------------------------------------
# UI ------------------------------------------------------------------------
# ---------------------------------------------------------------------------
def _load_html(name: str) -> str:
return (ROOT / "html" / name).read_text(encoding="utf-8")
html_front_layout = _load_html("front_layout.html")
with gr.Blocks(title="Swift Stock Screener, by Reddgr") as front:
gr.HTML(html_front_layout)
# ---------------------- TOP INPUT -------------------------------------
with gr.Row(equal_height=True):
theme_input = gr.Textbox(show_label=False, placeholder="Search a theme. i.e. 'lithium'", scale=2)
ticker_input = gr.Textbox(show_label=False, placeholder="Enter a ticker symbol. i.e. 'nvda'", scale=1)
buscar_button = gr.Button("Search")
gr.HTML("<div></div>")
reset_button = gr.Button("Reset", elem_classes="small-btn")
# gr.HTML("<div></div>")
random_button = gr.Button("Random ticker", elem_classes="small-btn")
# ---------------------- SEARCH SUMMARY ------------------------
summary_display = gr.Markdown("", elem_classes="search-spec")
# ---------------------- RESULTS ↔ COMPANY TABS ----------------------------
with gr.Tabs(selected=0) as main_tabs: # 0 = “Results”
# ---- TAB 1: GRID --------------------------------------------------
with gr.TabItem("Grid"):
output_df = gr.Dataframe(
value=_initial_slice,
interactive=False,
elem_classes="df-cells",
)
with gr.Row():
btn_prev = gr.Button("Previous", elem_classes="small-btn")
pagination_label = gr.Markdown(_initial_label)
btn_next = gr.Button("Next", elem_classes="small-btn")
gr.Markdown(" " * 20)
sort_col = gr.Dropdown(
[rename_columns.get(c, c) for c in caracteristicas],
value=None,
label="Reset and sort by:",
allow_custom_value=False,
scale=2,
)
sort_dir = gr.Radio(
["Ascending", "Descending"],
value="Descending",
label="",
scale=1,
)
# ---- TAB 2: COMPANY --------------------------------------------------
'''
with gr.TabItem("Company details")as company_tab: ####
company_title = gr.Markdown(f"## {init_name}" if init_name else "### Company Name")
company_summary = gr.Markdown(init_summary)
company_details = gr.Dataframe(value=init_details, interactive=False)
'''
with gr.TabItem("Company details") as company_tab:
with gr.Row():
with gr.Column(scale=1):
company_title = gr.Markdown(f"## {init_name}" if init_name else "### Company Name")
company_summary = gr.Markdown(init_summary)
company_details = gr.Dataframe(value=init_details, interactive=False)
with gr.Column(scale=1):
company_chart_title = gr.Markdown("## Key Metrics Radar Chart")
company_plot = gr.Plot(visible=True)
def on_company_tab():
global selected_ticker
# if evt.selected and selected_ticker:
if selected_ticker:
maestro_details = maestro[company_details_cols].copy()
# maestro_details.drop(columns=["embeddings"], inplace=True, errors="ignore")
name, summary, details_df = utils.get_company_info(
maestro_details, selected_ticker, rename_columns
)
# Create spider plot figure
fig = None
try:
if not details_df.empty:
fig = utils.get_spider_plot_fig(details_df)
except Exception as e:
print(f"Error creating spider plot: {e}")
return (
gr.update(value=f"## {name}"),
gr.update(value=summary),
gr.update(value=details_df),
gr.update(value=fig),
# gr.update()
### summary_display ##########
)
# No company selected – leave widgets as‑is
return gr.update(), gr.update(), gr.update(), gr.update() # summary_display
company_tab.select(
on_company_tab,
inputs=[],
outputs=[company_title, company_summary, company_details, company_plot]
)
# ---------------------- TABLE SELECT (CLICK) ---------------------
page_state = gr.State(1)
def on_table_select(evt: gr.SelectData):
print(f"DEBUG on_table_select called: index={evt.index}, value={evt.value}")
global last_result_df, selected_ticker
row_i, col_i = evt.index
if col_i == 0:
ticker = evt.value
print(f"DEBUG ticker extracted: {ticker}")
selected_ticker = ticker
elif col_i == 1 or (4 <= col_i <= 10):
display_col = rename_columns.get("ticker", "ticker")
ticker = last_result_df.iloc[row_i][display_col]
print(f"DEBUG ticker extracted: {ticker}")
else:
# Filter by column returns (df, pagination_label, page_number, summary)
filtered_df, pagination, page, summary = filter_by_column(evt)
# We need to return all 9 output values
return (
filtered_df,
pagination,
page,
summary,
gr.update(selected=0), # Keep on the results tab
gr.update(), # company_title
gr.update(), # company_summary
gr.update(), # company_details
gr.update() # company_plot
)
maestro_details = maestro[company_details_cols].copy()
name, summary, details_df = utils.get_company_info(maestro_details, ticker, rename_columns)
# Create spider plot figure
fig = None
try:
if not details_df.empty:
fig = utils.get_spider_plot_fig(details_df)
except Exception as e:
print(f"Error creating spider plot: {e}")
# details_df.to_pickle(ROOT / "pkl" / "details_df_test.pkl")
print(f"DEBUG ➡ selected ticker={ticker}, name={name}")
return (
last_result_df,
pagination_label,
page_state,
#summary_display,
gr.update(),
gr.update(selected=1),
gr.update(value=f"## {name}"),
gr.update(value=summary),
gr.update(value=details_df),
gr.update(value=fig)
)
output_df.select(
on_table_select,
inputs=[],
outputs=[
output_df, pagination_label, page_state, summary_display,
main_tabs, company_title, company_summary, company_details, company_plot
]
)
# — Update company‑details whenever the table’s first row changes —
def on_df_first_row_change(df: pd.DataFrame):
global selected_ticker
# if table is empty, do nothing
if df is None or df.empty:
return gr.update(), gr.update(), gr.update()
# extract ticker from first row
ticker_col = rename_columns.get('ticker','ticker')
new_ticker = df.iloc[0][ticker_col]
# if it really changed, fetch new info
if new_ticker != selected_ticker:
selected_ticker = new_ticker
maestro_details = maestro[company_details_cols].copy()
name, summary, details_df = utils.get_company_info(maestro_details, selected_ticker, rename_columns)
# Create spider plot figure
fig = None
try:
if not details_df.empty:
fig = utils.get_spider_plot_fig(details_df)
except Exception as e:
print(f"Error creating spider plot: {e}")
return (
gr.update(value=f"## {name}"),
gr.update(value=summary),
gr.update(value=details_df),
gr.update(value=fig),
# gr.update()
)
# otherwise leave components as‑is
return gr.update(), gr.update(), gr.update(), gr.update()
output_df.change(
on_df_first_row_change,
inputs=[output_df],
outputs=[company_title, company_summary, company_details, company_plot]
)
# ---------------------- EXCLUSION FILTER TOGGLES --------------------------------
# De momento excluimos esta funcionalidad, al menos en la tabla de acciones,
# por la complejidad que añade (es una herencia del buscador de fondos de inversión)
# Potencial mejora para cuando incorporemos la tabla de ETFs
'''
with gr.Row():
toggle_components = [
gr.Checkbox(value=True, label=rename_columns.get(k, k)) for k in filtros_keys
]
'''
# ---------------------- HELPERS ---------------------------------------
def reset_page():
return 1
def prev_page(p):
return max(p - 1, 1)
def next_page(p):
return p + 1
def search_inputs():
return [theme_input, ticker_input, page_state]
def random_action() -> tuple[str,int,str]:
return utils.random_ticker(maestro), 1, ""
# ---------------------- BINDINGS --------------------------------------
# search_dynamic -> search_all
inputs = [theme_input, ticker_input, page_state]
buscar_button.click(
search_all,
inputs=inputs,
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
).then(
on_company_tab,
inputs=[],
outputs=[company_title, company_summary, company_details, company_plot]
)
ticker_input.submit(
reset_page, [], page_state
).then(
search_all,
inputs=inputs,
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
).then(
on_company_tab,
inputs=[],
outputs=[company_title, company_summary, company_details, company_plot]
)
theme_input.submit(
reset_page, [], page_state
).then(
search_all,
inputs=inputs,
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
)
random_button.click(
random_action,
[],
[ticker_input, page_state, theme_input]
).then(
search_all,
inputs=inputs,
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
)
reset_button.click(
reset_initial,
[],
[output_df, pagination_label, page_state, ticker_input, theme_input, sort_col, summary_display]
)
btn_prev.click(
prev_page, page_state, page_state
).then(
page_change,
inputs=inputs,
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
)
btn_next.click(
next_page, page_state, page_state
).then(
page_change,
inputs=inputs,
outputs=[output_df, pagination_label, ticker_input, theme_input, summary_display]
)
sort_col.change(
apply_sort,
inputs=[sort_col, sort_dir],
outputs=[output_df, pagination_label, page_state, summary_display]
)
sort_dir.change(
apply_sort,
inputs=[sort_col, sort_dir],
outputs=[output_df, pagination_label, page_state, summary_display]
)
def on_tab_change(tab_index):
if tab_index == 1 and selected_ticker:
maestro_details = maestro[company_details_cols].copy()
name, summary, details_df = utils.get_company_info(maestro_details, selected_ticker, rename_columns)
# Create spider plot figure
fig = None
try:
if not details_df.empty:
fig = utils.get_spider_plot_fig(details_df)
except Exception as e:
print(f"Error creating spider plot: {e}")
return (
gr.update(value=f"## {name}"),
gr.update(value=summary),
gr.update(value=details_df),
gr.update(value=fig)
)
return gr.update(), gr.update(), gr.update(), gr.update()
# ---------------------- FILTERS BY COLUMN ------------------ #
filterable_columns = [rename_columns.get(c, c) for c in cat_cols]
def filter_by_column(evt: gr.SelectData) -> tuple[pd.DataFrame,str,int,str]:
global last_result_df, last_column_filters
if last_result_df.empty:
return pd.DataFrame(), "Page 1 of 1", 1, _compose_summary()
col = last_result_df.columns[evt.index[1]]
# print(f"DEBUG: resolving to column #{evt.index[1]} → '{col}'")
val = evt.value
last_column_filters.append((col, val))
filtered = last_result_df[last_result_df[col] == val]
last_result_df = filtered.copy()
slice_df, label = _paginate(last_result_df, 1)
summary = _compose_summary()
return slice_df, label, 1, summary
# ---------------------------------------------------------------------------
# LAUNCH --------------------------------------------------------------------
# ---------------------------------------------------------------------------
if __name__ == "__main__":
front.launch()
|