Spaces:
Sleeping
Sleeping
File size: 82,500 Bytes
b8e2abb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 |
from typing import Dict, Any, List, Tuple
import streamlit as st
import yfinance as yf
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
from newsapi.newsapi_client import NewsApiClient
import requests
import os
import sqlite3
from sqlite3 import Error
import json
import openai
from prophet import Prophet
from prophet.plot import plot_plotly
from sklearn.preprocessing import StandardScaler, MinMaxScaler
import asyncio
import aiohttp
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch_geometric.nn import GCNConv
from torch_geometric.data import Data
import skfuzzy as fuzz
import skfuzzy.control as ctrl
import numpy as np
import networkx as nx
import random
import matplotlib.pyplot as plt
from streamlit_autorefresh import st_autorefresh
import cvxpy as cp # For portfolio optimization
from sklearn.ensemble import IsolationForest # For anomaly detection
# ----------------------------
# Configuration and Constants
# ----------------------------
# Load environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
FMP_API_KEY = os.getenv("FMP_API_KEY")
NEWS_API_KEY = os.getenv("NEWS_API_KEY")
if not OPENAI_API_KEY or not FMP_API_KEY or not NEWS_API_KEY:
st.error(
"API keys for OpenAI, Financial Modeling Prep, and NewsAPI are not set. Please set them in the `.streamlit/secrets.toml` file."
)
st.stop()
# Initialize OpenAI
openai.api_key = OPENAI_API_KEY
# Initialize NewsApiClient
newsapi = NewsApiClient(api_key=NEWS_API_KEY)
# Database Configuration
DATABASE = "stock_dashboard.db"
# ----------------------------
# API Rate Limits Configuration
# ----------------------------
# Define API rate limits (example limits; adjust based on your subscription)
API_RATE_LIMITS = {
"FMP": {
"max_requests_per_day": 500,
"current_count": 0,
"last_reset": datetime.utcnow().date()
},
"NewsAPI": {
"max_requests_per_day": 500,
"current_count": 0,
"last_reset": datetime.utcnow().date()
},
"OpenAI": {
"max_requests_per_day": 1000,
"current_count": 0,
"last_reset": datetime.utcnow().date()
}
}
# ----------------------------
# Helper Functions
# ----------------------------
def local_css():
"""Injects custom CSS for enhanced styling."""
st.markdown(
"""
<style>
/* Sidebar Styling */
.css-1d391kg {
background-color: #f0f2f6;
}
/* Header Styling */
.title {
font-size: 3rem;
text-align: center;
color: #2e86de;
margin-bottom: 0;
}
.description {
text-align: center;
color: #555555;
margin-top: 0;
margin-bottom: 2rem;
font-size: 1.2rem;
}
/* DataFrame Styling */
.dataframe th, .dataframe td {
text-align: center;
padding: 10px;
}
/* Footer Styling */
.footer {
text-align: center;
color: #888888;
margin-top: 3rem;
font-size: 0.9rem;
}
/* Dark Mode Styling */
.dark-mode {
background-color: #1e1e1e;
color: #ffffff;
}
/* Chat Interface Styling */
.chat-container {
max-height: 500px;
overflow-y: auto;
padding: 10px;
border: 1px solid #ccc;
border-radius: 5px;
background-color: #f9f9f9;
margin-bottom: 1rem;
}
.user-message {
text-align: right;
margin: 5px 0;
color: #2e86de;
}
.assistant-message {
text-align: left;
margin: 5px 0;
color: #e74c3c;
}
/* Tooltip Styling */
.tooltip {
position: relative;
display: inline-block;
border-bottom: 1px dotted black;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 220px;
background-color: #555;
color: #fff;
text-align: left;
border-radius: 6px;
padding: 5px;
position: absolute;
z-index: 1;
bottom: 125%; /* Position above */
left: 50%;
margin-left: -110px;
opacity: 0;
transition: opacity 0.3s;
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
}
/* Button Styling */
.css-1aumxhk {
background-color: #2e86de;
color: white;
}
</style>
""",
unsafe_allow_html=True,
)
def initialize_database():
"""
Initializes the SQLite database and creates necessary tables if they don't exist.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
# Create interactions table
cursor.execute("""
CREATE TABLE IF NOT EXISTS interactions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT NOT NULL,
user_input TEXT NOT NULL,
assistant_response TEXT NOT NULL
)
""")
# Create stock_cache table
cursor.execute("""
CREATE TABLE IF NOT EXISTS stock_cache (
ticker TEXT PRIMARY KEY,
fetched_at TEXT NOT NULL,
data TEXT NOT NULL
)
""")
# Create portfolio table
cursor.execute("""
CREATE TABLE IF NOT EXISTS portfolio (
id INTEGER PRIMARY KEY AUTOINCREMENT,
ticker TEXT NOT NULL,
added_at TEXT NOT NULL
)
""")
# Create api_usage table
cursor.execute("""
CREATE TABLE IF NOT EXISTS api_usage (
api_name TEXT PRIMARY KEY,
request_count INTEGER NOT NULL,
last_reset TEXT NOT NULL
)
""")
# Initialize api_usage records if they don't exist
for api in API_RATE_LIMITS.keys():
cursor.execute("""
INSERT OR IGNORE INTO api_usage (api_name, request_count, last_reset)
VALUES (?, ?, ?)
""", (api, 0, datetime.utcnow().date().isoformat()))
conn.commit()
conn.close()
except Error as e:
st.error(f"Error initializing database: {e}")
st.stop()
def insert_interaction(user_input, assistant_response):
"""
Inserts a user interaction into the interactions table.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
INSERT INTO interactions (timestamp, user_input, assistant_response)
VALUES (?, ?, ?)
""", (datetime.utcnow().isoformat(), user_input, assistant_response))
conn.commit()
conn.close()
except Error as e:
st.error(f"Error inserting interaction: {e}")
def fetch_interactions(limit=50):
"""
Fetches the most recent user interactions.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
SELECT timestamp, user_input, assistant_response
FROM interactions
ORDER BY id DESC
LIMIT ?
""", (limit,))
rows = cursor.fetchall()
conn.close()
return rows
except Error as e:
st.error(f"Error fetching interactions: {e}")
return []
def clear_interactions():
"""
Clears all records from the interactions table.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("DELETE FROM interactions")
conn.commit()
conn.close()
st.success("All interactions have been cleared.")
except Error as e:
st.error(f"Error clearing interactions: {e}")
def insert_stock_cache(ticker, data):
"""
Inserts or updates stock data in the stock_cache table.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
INSERT INTO stock_cache (ticker, fetched_at, data)
VALUES (?, ?, ?)
ON CONFLICT(ticker) DO UPDATE SET
fetched_at=excluded.fetched_at,
data=excluded.data
""", (ticker.upper(), datetime.utcnow().isoformat(), json.dumps(data, default=str)))
conn.commit()
conn.close()
except Error as e:
st.error(f"Error inserting stock cache: {e}")
def fetch_stock_cache(ticker):
"""
Fetches cached stock data for a given ticker.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
SELECT fetched_at, data
FROM stock_cache
WHERE ticker = ?
""", (ticker.upper(),))
row = cursor.fetchone()
conn.close()
if row:
fetched_at, data = row
return json.loads(data), fetched_at
return None, None
except Error as e:
st.error(f"Error fetching stock cache: {e}")
return None, None
def clear_stock_cache():
"""
Clears all records from the stock_cache table.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("DELETE FROM stock_cache")
conn.commit()
conn.close()
st.success("All cached stock data has been cleared.")
except Error as e:
st.error(f"Error clearing stock cache: {e}")
def add_to_portfolio(ticker):
"""
Adds a ticker to the user's portfolio.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
INSERT INTO portfolio (ticker, added_at)
VALUES (?, ?)
""", (ticker.upper(), datetime.utcnow().isoformat()))
conn.commit()
conn.close()
st.success(f"{ticker.upper()} has been added to your portfolio.")
except Error as e:
st.error(f"Error adding to portfolio: {e}")
def remove_from_portfolio(ticker):
"""
Removes a ticker from the user's portfolio.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
DELETE FROM portfolio
WHERE ticker = ?
""", (ticker.upper(),))
conn.commit()
conn.close()
st.success(f"{ticker.upper()} has been removed from your portfolio.")
except Error as e:
st.error(f"Error removing from portfolio: {e}")
def fetch_portfolio():
"""
Fetches the user's portfolio.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
SELECT ticker
FROM portfolio
""")
rows = cursor.fetchall()
conn.close()
return [row[0] for row in rows]
except Error as e:
st.error(f"Error fetching portfolio: {e}")
return []
def update_api_usage(api_name):
"""
Increments the API usage count for the specified API and checks rate limits.
Returns True if the API call is allowed, False otherwise.
"""
try:
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
SELECT request_count, last_reset
FROM api_usage
WHERE api_name = ?
""", (api_name,))
row = cursor.fetchone()
if row:
request_count, last_reset = row
last_reset_date = datetime.fromisoformat(last_reset).date()
today = datetime.utcnow().date()
if last_reset_date < today:
# Reset the count
cursor.execute("""
UPDATE api_usage
SET request_count = 1, last_reset = ?
WHERE api_name = ?
""", (today.isoformat(), api_name))
conn.commit()
conn.close()
API_RATE_LIMITS[api_name]["current_count"] = 1
API_RATE_LIMITS[api_name]["last_reset"] = today
return True
else:
if request_count < API_RATE_LIMITS[api_name]["max_requests_per_day"]:
# Increment the count
cursor.execute("""
UPDATE api_usage
SET request_count = request_count + 1
WHERE api_name = ?
""", (api_name,))
conn.commit()
conn.close()
API_RATE_LIMITS[api_name]["current_count"] += 1
return True
else:
# Rate limit exceeded
conn.close()
st.warning(f"{api_name} API rate limit exceeded for today.")
return False
else:
# API not found in usage table
conn.close()
st.error(f"API usage record for {api_name} not found.")
return False
except Error as e:
st.error(f"Error updating API usage: {e}")
return False
async def fetch_single_stock_data(session, ticker):
"""
Asynchronously fetches stock data for a single ticker, respecting API rate limits.
"""
if not update_api_usage("FMP"):
st.warning(f"Financial Modeling Prep API rate limit exceeded. Skipping {ticker.upper()}.")
return ticker, {}
cached_data, fetched_at = fetch_stock_cache(ticker)
if cached_data:
return ticker, cached_data
else:
try:
stock = yf.Ticker(ticker)
info = stock.info
insert_stock_cache(ticker, info)
return ticker, info
except Exception as e:
st.error(f"Error fetching data for {ticker}: {e}")
return ticker, {}
async def fetch_all_stock_data(tickers):
"""
Asynchronously fetches stock data for all tickers.
"""
async with aiohttp.ClientSession() as session:
tasks = []
for ticker in tickers:
task = asyncio.ensure_future(fetch_single_stock_data(session, ticker))
tasks.append(task)
responses = await asyncio.gather(*tasks)
return responses
# -----------------------------
# Fuzzy Logic for Mutation Rate
# -----------------------------
def prepare_graph(num_nodes=10):
"""
Prepares a graph with edge weights.
"""
graph = nx.complete_graph(num_nodes)
for u, v in graph.edges:
graph[u][v]['weight'] = random.randint(1, 100) # Assign random weights
return graph
def visualize_fuzzy_logic(controller):
"""
Visualizes fuzzy membership functions.
"""
x = np.arange(0, 1.01, 0.01)
fig, ax = plt.subplots(figsize=(8, 5))
ax.plot(x, fuzz.trapmf(x, [0, 0, 0.3, 0.5]), label="Low Uncertainty")
ax.plot(x, fuzz.trimf(x, [0.3, 0.5, 0.7]), label="Medium Uncertainty")
ax.plot(x, fuzz.trapmf(x, [0.5, 0.7, 1, 1]), label="High Uncertainty")
ax.legend()
ax.set_title("Fuzzy Membership Functions")
ax.set_xlabel("Uncertainty")
ax.set_ylabel("Membership Degree")
st.pyplot(fig)
class FuzzyMutationController:
def __init__(self):
# Define fuzzy variables
self.uncertainty = ctrl.Antecedent(np.arange(0, 1.01, 0.01), 'uncertainty')
self.mutation_rate = ctrl.Consequent(np.arange(0, 1.01, 0.01), 'mutation_rate')
# Define membership functions
self.uncertainty['low'] = fuzz.trapmf(self.uncertainty.universe, [0, 0, 0.3, 0.5])
self.uncertainty['medium'] = fuzz.trimf(self.uncertainty.universe, [0.3, 0.5, 0.7])
self.uncertainty['high'] = fuzz.trapmf(self.uncertainty.universe, [0.5, 0.7, 1, 1])
self.mutation_rate['low'] = fuzz.trapmf(self.mutation_rate.universe, [0, 0, 0.1, 0.3])
self.mutation_rate['medium'] = fuzz.trimf(self.mutation_rate.universe, [0.1, 0.3, 0.5])
self.mutation_rate['high'] = fuzz.trapmf(self.mutation_rate.universe, [0.3, 0.5, 1, 1])
# Define fuzzy rules
rule1 = ctrl.Rule(self.uncertainty['low'], self.mutation_rate['low'])
rule2 = ctrl.Rule(self.uncertainty['medium'], self.mutation_rate['medium'])
rule3 = ctrl.Rule(self.uncertainty['high'], self.mutation_rate['high'])
# Create control system and simulation
self.mutation_ctrl = ctrl.ControlSystem([rule1, rule2, rule3])
self.mutation_sim = ctrl.ControlSystemSimulation(self.mutation_ctrl)
def compute_mutation_rate(self, uncertainty_value):
# Ensure uncertainty_value is within [0, 1]
uncertainty_value = min(max(uncertainty_value, 0), 1)
self.mutation_sim.input['uncertainty'] = uncertainty_value
self.mutation_sim.compute()
mutation_rate = self.mutation_sim.output['mutation_rate']
# Ensure mutation_rate is within [0, 1]
mutation_rate = min(max(mutation_rate, 0), 1)
return mutation_rate
# -----------------------------
# Genetic Algorithm Definition
# -----------------------------
class GeneticAlgorithm:
def __init__(self, graph, fuzzy_controller, population_size=50, generations=100):
self.graph = graph
self.nodes = list(graph.nodes)
self.fuzzy_controller = fuzzy_controller
self.population_size = population_size
self.generations = generations
def fitness(self, path):
"""
Calculates the fitness of a path.
"""
score = 0
for i in range(len(path)):
u = path[i]
v = path[(i + 1) % len(path)] # Wrap around to the start
if self.graph.has_edge(u, v):
score += self.graph[u][v].get('weight', 0) # Use weight attribute
else:
score -= 1000 # Penalize missing edges heavily
return score
def run(self) -> Tuple[List[Any], List[float], List[float]]:
# Initialize random population of paths
population = [random.sample(self.nodes, len(self.nodes)) for _ in range(self.population_size)]
best_fitness_history = []
mutation_rate_history = []
for generation in range(self.generations):
# Evaluate fitness of the population
fitness_scores = [self.fitness(path) for path in population]
# Normalize fitness scores
fitness_array = np.array(fitness_scores)
fitness_mean = np.mean(fitness_array)
fitness_std = np.std(fitness_array)
uncertainty_value = fitness_std / (abs(fitness_mean) + 1e-6)
# Normalize uncertainty_value to [0, 1]
uncertainty_value = uncertainty_value / (uncertainty_value + 1)
# Compute mutation rate using fuzzy logic
mutation_rate = self.fuzzy_controller.compute_mutation_rate(uncertainty_value)
# Select top candidates (elitism)
sorted_population = [path for _, path in sorted(zip(fitness_scores, population), reverse=True)]
population = sorted_population[:self.population_size // 2]
# Generate new population through crossover and mutation
new_population = population.copy()
while len(new_population) < self.population_size:
parent1, parent2 = random.sample(population, 2)
child = self.crossover(parent1, parent2)
child = self.mutate(child, mutation_rate)
new_population.append(child)
population = new_population
# Record best fitness and mutation rate
best_fitness = max(fitness_scores)
best_fitness_history.append(best_fitness)
mutation_rate_history.append(mutation_rate)
# Update progress bar in Streamlit
if 'ga_progress' in st.session_state:
st.session_state.ga_progress.progress((generation + 1) / self.generations)
st.session_state.ga_status.text(f"Generation {generation + 1}/{self.generations}")
st.session_state.ga_chart.add_rows({"Best Fitness": best_fitness})
# Return the best path found
fitness_scores = [self.fitness(path) for path in population]
best_index = fitness_scores.index(max(fitness_scores))
best_path = population[best_index]
return best_path, best_fitness_history, mutation_rate_history
def crossover(self, parent1, parent2):
# Ordered Crossover (OX)
size = len(parent1)
start, end = sorted(random.sample(range(size), 2))
child = [None] * size
# Copy a slice from parent1 to child
child[start:end] = parent1[start:end]
# Fill the remaining positions with genes from parent2
ptr = end
for gene in parent2:
if gene not in child:
if ptr >= size:
ptr = 0
child[ptr] = gene
ptr += 1
return child
def mutate(self, individual, mutation_rate):
if random.random() < mutation_rate:
idx1, idx2 = random.sample(range(len(individual)), 2)
individual[idx1], individual[idx2] = individual[idx2], individual[idx1]
return individual
# ----------------------------
# AI Assistant Integration
# ----------------------------
class RealAgent:
"""Main agent logic handling interactions with the OpenAI Assistant."""
def __init__(self):
self.agent_state = AgentState()
def process(self, user_input: str, selected_tickers: List[str], stock_df: pd.DataFrame,
historical_dfs: Dict[str, pd.DataFrame], news_articles: Dict[str, List[Dict[str, Any]]],
fsirdm_data: Dict[str, Any]) -> str:
"""
Processes user input and generates a response using the AI Assistant.
"""
# Retrieve conversation history for context
conversation_history = self.agent_state.get_conversation_history()
# Generate additional context from the data
additional_context = self.generate_additional_context(selected_tickers, stock_df, historical_dfs, news_articles, fsirdm_data)
# Generate response using OpenAI
response = generate_openai_response(conversation_history, user_input, additional_context)
# Store interaction
self.agent_state.store_interaction(user_input, response)
insert_interaction(user_input, response)
return response
def generate_additional_context(self, selected_tickers: List[str], stock_df: pd.DataFrame,
historical_dfs: Dict[str, pd.DataFrame], news_articles: Dict[str, List[Dict[str, Any]]],
fsirdm_data: Dict[str, Any]) -> str:
"""
Generates a concise summary of the selected stocks' data, historical data, news, and FSIRDM analysis to provide context to the assistant.
"""
try:
# Get stock data
stock_data = stock_df[stock_df['Ticker'].isin(selected_tickers)].to_dict(orient='records')
# Get historical data metrics
historical_metrics: Dict[str, Any] = {}
for ticker in selected_tickers:
hist_df = historical_dfs.get(ticker, pd.DataFrame())
if not hist_df.empty:
metrics = {
"Latest Close": hist_df['Close'].iloc[-1],
"52 Week High": hist_df['Close'].max(),
"52 Week Low": hist_df['Close'].min(),
"SMA 20": hist_df['SMA_20'].iloc[-1],
"EMA 20": hist_df['EMA_20'].iloc[-1],
"Volatility (Std Dev)": hist_df['Close'].std(),
"RSI": hist_df['RSI'].iloc[-1]
}
else:
metrics = "No historical data available."
historical_metrics[ticker] = metrics
# Get FSIRDM analysis
fsirdm_summary = fsirdm_data
# Get latest news headlines
news_summary: Dict[str, Any] = {}
if news_articles and isinstance(news_articles, dict):
for ticker, articles in news_articles.items():
if articles and isinstance(articles, list):
news_summary[ticker] = [
{
"Title": article['Title'],
"Description": article['Description'],
"URL": article['URL'],
"Published At": article['Published At']
}
for article in articles
]
else:
news_summary[ticker] = "No recent news articles found."
else:
news_summary = "No recent news articles found."
# Combine all summaries into a structured JSON format
additional_context = {
"Stock Data": stock_data,
"Historical Metrics": historical_metrics,
"FSIRDM Analysis": fsirdm_summary,
"Latest News": news_summary
}
# Convert to JSON string with proper date formatting
additional_context_json = json.dumps(additional_context, default=str, indent=4)
# Truncate if necessary to stay within token limits
max_length = 32000 # Adjust based on token count estimates
if len(additional_context_json) > max_length:
additional_context_json = additional_context_json[:max_length] + "..."
return additional_context_json
except Exception as e:
st.error(f"Error generating additional context: {e}")
return ""
class AgentState:
"""Manages the agent's memory and state."""
def __init__(self):
self.short_term_memory: List[Dict[str, str]] = self.load_memory()
def load_memory(self) -> List[Dict[str, str]]:
"""
Loads recent interactions from the database to provide context.
"""
interactions = fetch_interactions(limit=50)
memory: List[Dict[str, str]] = []
for interaction in reversed(interactions): # oldest first
timestamp, user_input, assistant_response = interaction
memory.append({
"user_input": user_input,
"assistant_response": assistant_response
})
return memory
def store_interaction(self, user_input: str, response: str) -> None:
"""
Stores a new interaction in the memory.
"""
self.short_term_memory.append({"user_input": user_input, "assistant_response": response})
if len(self.short_term_memory) > 10:
self.short_term_memory.pop(0)
def get_conversation_history(self) -> List[Dict[str, str]]:
"""
Returns the current conversation history.
"""
return self.short_term_memory
def reset_memory(self) -> None:
"""
Resets the short-term memory.
"""
self.short_term_memory = []
def generate_openai_response(conversation_history: List[Dict[str, str]], user_input: str, additional_context: str) -> str:
"""
Generates a response from OpenAI's GPT-4 model based on the conversation history, user input, and additional context.
"""
try:
# Prepare the messages for the model
messages = [
{
"role": "system",
"content": (
"You are a financial AI assistant leveraging the FS-IRDM framework to analyze real-time stock data and news sentiment. "
"You compare multiple stocks, quantify uncertainties with fuzzy memberships, and classify stocks into high-growth, stable, and risky categories. "
"Utilize transformation matrices and continuous utility functions to optimize portfolio decisions while conserving expected utility. "
"Dynamically adapt through sensitivity analysis and stochastic modeling of market volatility, ensuring decision integrity with homeomorphic mappings. "
"Refine utility functions based on investor preferences and risk aversion, employ advanced non-linear optimization and probabilistic risk analysis, "
"and ensure secure data handling with fuzzy logic-enhanced memory compression and diffeomorphic encryption. Additionally, provide robust, explainable recommendations "
"and comprehensive reporting, maintaining consistency, adaptability, and efficiency in dynamic financial environments. "
"Use and learn from every single interaction to better tune your strategy and optimize the portfolio."
)
}
]
# Add additional context (stock data, historical data, news, FSIRDM analysis)
if additional_context:
messages.append({"role": "system", "content": f"Here is the relevant data:\n{additional_context}"})
# Add past interactions
for interaction in conversation_history:
messages.append({"role": "user", "content": interaction['user_input']})
messages.append({"role": "assistant", "content": interaction['assistant_response']})
# Add the current user input
messages.append({"role": "user", "content": user_input})
# Call OpenAI API
response = openai.ChatCompletion.create(
model="gpt-4",
messages=messages,
max_tokens=1500, # Adjust based on requirements
n=1,
stop=None,
temperature=0.7,
)
assistant_response: str = response.choices[0].message['content'].strip()
return assistant_response
except Exception as e:
st.error(f"Error generating response from OpenAI: {e}")
return "I'm sorry, I couldn't process your request at the moment."
# ----------------------------
# Swarm of AI Agents Definitions
# ----------------------------
class DataAnalysisAgent:
"""Agent responsible for in-depth data analysis."""
def analyze_market_trends(self, stock_df: pd.DataFrame) -> Dict[str, Any]:
"""
Analyzes market trends based on current stock data.
"""
try:
analysis = {}
# Example: Calculate average PE ratio
avg_pe = stock_df['PE Ratio'].mean()
analysis['Average PE Ratio'] = avg_pe
# Example: Identify top-performing sectors
sector_performance = stock_df.groupby('Sector')['Market Cap'].sum().reset_index()
top_sectors = sector_performance.sort_values(by='Market Cap', ascending=False).head(3)
analysis['Top Sectors by Market Cap'] = top_sectors.to_dict(orient='records')
# Add more sophisticated analyses as needed
return analysis
except Exception as e:
st.error(f"Error in Data Analysis Agent: {e}")
return {}
class PredictionAgent:
"""Agent responsible for forecasting and predictions."""
def forecast_stock_trends(self, historical_dfs: Dict[str, pd.DataFrame], forecast_period: int = 90) -> Dict[str, Any]:
"""
Forecasts future stock trends using Prophet.
"""
try:
forecasts = {}
for ticker, hist_df in historical_dfs.items():
if hist_df.empty:
forecasts[ticker] = "No historical data available."
continue
model, forecast_df = forecast_stock_price(hist_df, forecast_period)
if model is not None and not forecast_df.empty:
forecasts[ticker] = forecast_df[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(30).to_dict(orient='records')
else:
forecasts[ticker] = "Forecasting model could not generate predictions."
return forecasts
except Exception as e:
st.error(f"Error in Prediction Agent: {e}")
return {}
class SentimentAnalysisAgent:
"""Agent responsible for analyzing news sentiment."""
def analyze_sentiment(self, news_articles: Dict[str, List[Dict[str, Any]]]) -> Dict[str, float]:
"""
Analyzes sentiment of news articles using OpenAI's sentiment analysis.
Returns sentiment scores per ticker.
"""
sentiment_scores = {}
try:
for ticker, articles in news_articles.items():
if not articles:
sentiment_scores[ticker] = 0.0 # Neutral sentiment
continue
sentiments = []
for article in articles:
prompt = f"Analyze the sentiment of the following news article and rate it from -1 (very negative) to 1 (very positive):\n\nTitle: {article['Title']}\nDescription: {article['Description']}"
sentiment = get_sentiment_from_openai(prompt)
sentiments.append(sentiment)
# Average sentiment score
if sentiments:
avg_sentiment = sum(sentiments) / len(sentiments)
sentiment_scores[ticker] = avg_sentiment
else:
sentiment_scores[ticker] = 0.0
return sentiment_scores
except Exception as e:
st.error(f"Error in Sentiment Analysis Agent: {e}")
return sentiment_scores
class AnomalyDetectionAgent:
"""Agent responsible for detecting anomalies in stock data."""
def detect_anomalies(self, stock_df: pd.DataFrame, historical_dfs: Dict[str, pd.DataFrame]) -> Dict[str, List[str]]:
"""
Detects anomalies in stock data using Isolation Forest.
Returns a dictionary with tickers as keys and list of anomaly dates as values.
"""
anomalies = {}
try:
for ticker in stock_df['Ticker']:
hist_df = historical_dfs.get(ticker, pd.DataFrame())
if hist_df.empty:
anomalies[ticker] = ["No historical data available."]
continue
# Use Isolation Forest on Close prices
model = IsolationForest(contamination=0.05, random_state=42)
hist_df = hist_df.sort_values(by='Date')
hist_df['Close_Log'] = np.log(hist_df['Close'] + 1) # Log transform to stabilize variance
model.fit(hist_df[['Close_Log']])
hist_df['Anomaly'] = model.predict(hist_df[['Close_Log']])
anomaly_dates = hist_df[hist_df['Anomaly'] == -1]['Date'].tolist()
anomalies[ticker] = anomaly_dates if len(anomaly_dates) > 0 else ["No anomalies detected."]
return anomalies
except Exception as e:
st.error(f"Error in Anomaly Detection Agent: {e}")
return anomalies
class PortfolioOptimizationAgent:
"""Agent responsible for optimizing the user's portfolio."""
def optimize_portfolio(self, stock_df: pd.DataFrame, historical_dfs: Dict[str, pd.DataFrame]) -> Dict[str, Any]:
"""
Optimizes the portfolio using mean-variance optimization.
Returns the optimal weights for each stock.
"""
try:
tickers = stock_df['Ticker'].tolist()
returns_data = []
valid_tickers = []
# Calculate daily returns for each ticker
for ticker in tickers:
hist_df = historical_dfs.get(ticker, pd.DataFrame())
if hist_df.empty or len(hist_df) < 2:
st.warning(f"Not enough historical data for {ticker} to calculate returns.")
continue
hist_df = hist_df.sort_values(by='Date')
hist_df['Return'] = hist_df['Close'].pct_change()
returns = hist_df['Return'].dropna()
returns_data.append(returns)
valid_tickers.append(ticker)
# Check if there are enough tickers to optimize
if len(valid_tickers) < 2:
st.error("Not enough tickers with sufficient historical data for portfolio optimization.")
return {"Optimal Weights": "Insufficient data."}
# Create a DataFrame of returns
returns_df = pd.concat(returns_data, axis=1, join='inner')
returns_df.columns = valid_tickers
# Calculate expected returns and covariance matrix
expected_returns = returns_df.mean() * 252 # Annualize
cov_matrix = returns_df.cov() * 252 # Annualize
# Check if covariance matrix is positive semi-definite
if not self.is_positive_semi_definite(cov_matrix.values):
st.error("Covariance matrix is not positive semi-definite. Adjusting...")
cov_matrix_values = self.nearest_positive_semi_definite(cov_matrix.values)
else:
cov_matrix_values = cov_matrix.values
n = len(valid_tickers)
weights = cp.Variable(n)
portfolio_return = expected_returns.values @ weights
portfolio_risk = cp.quad_form(weights, cov_matrix_values)
risk_aversion = 0.5 # Adjust based on preference
# Define the optimization problem
problem = cp.Problem(cp.Maximize(portfolio_return - risk_aversion * portfolio_risk),
[cp.sum(weights) == 1, weights >= 0])
problem.solve()
if weights.value is not None:
optimal_weights = {ticker: round(weight, 4) for ticker, weight in zip(valid_tickers, weights.value)}
return {"Optimal Weights": optimal_weights}
else:
return {"Optimal Weights": "Optimization failed."}
except Exception as e:
st.error(f"Error in Portfolio Optimization Agent: {e}")
return {"Optimal Weights": "Optimization failed."}
def nearest_positive_semi_definite(self, A):
"""
Finds the nearest positive semi-definite matrix to A.
"""
try:
B = (A + A.T) / 2
_, s, V = np.linalg.svd(B)
H = np.dot(V.T, np.dot(np.diag(s), V))
A2 = (B + H) / 2
A3 = (A2 + A2.T) / 2
if self.is_positive_semi_definite(A3):
return A3
else:
return np.eye(A.shape[0]) # Fallback to identity matrix
except Exception as e:
st.error(f"Error in making matrix positive semi-definite: {e}")
return np.eye(A.shape[0])
def is_positive_semi_definite(self, A):
"""
Checks if matrix A is positive semi-definite.
"""
try:
return np.all(np.linalg.eigvals(A) >= -1e-10)
except Exception as e:
st.error(f"Error checking positive semi-definiteness: {e}")
return False
class RealTimeAlertingAgent:
"""Agent responsible for real-time alerting based on stock data."""
def generate_alerts(self, stock_df: pd.DataFrame, sentiment_scores: Dict[str, float],
anomaly_data: Dict[str, List[str]]) -> Dict[str, List[str]]:
"""
Generates alerts based on specific conditions such as high volatility, negative sentiment, or detected anomalies.
Returns a dictionary with tickers as keys and list of alerts as values.
"""
alerts = {}
try:
for index, row in stock_df.iterrows():
ticker = row['Ticker']
alerts[ticker] = []
# Example Alert 1: High PE Ratio
if row['PE Ratio'] > 25:
alerts[ticker].append("High PE Ratio detected.")
# Example Alert 2: Negative Sentiment
sentiment = sentiment_scores.get(ticker, 0)
if sentiment < -0.5:
alerts[ticker].append("Negative sentiment in recent news.")
# Example Alert 3: Anomalies detected
anomaly_dates = anomaly_data.get(ticker, [])
if anomaly_dates and anomaly_dates != ["No anomalies detected."]:
alerts[ticker].append(f"Anomalies detected on dates: {', '.join(map(str, anomaly_dates))}")
# Add more alert conditions as needed
return alerts
except Exception as e:
st.error(f"Error in Real-Time Alerting Agent: {e}")
return alerts
# Initialize agents
if 'real_agent' not in st.session_state:
st.session_state.real_agent = RealAgent()
if 'data_analysis_agent' not in st.session_state:
st.session_state.data_analysis_agent = DataAnalysisAgent()
if 'prediction_agent' not in st.session_state:
st.session_state.prediction_agent = PredictionAgent()
if 'sentiment_analysis_agent' not in st.session_state:
st.session_state.sentiment_analysis_agent = SentimentAnalysisAgent()
if 'anomaly_detection_agent' not in st.session_state:
st.session_state.anomaly_detection_agent = AnomalyDetectionAgent()
if 'portfolio_optimization_agent' not in st.session_state:
st.session_state.portfolio_optimization_agent = PortfolioOptimizationAgent()
if 'real_time_alerting_agent' not in st.session_state:
st.session_state.real_time_alerting_agent = RealTimeAlertingAgent()
# ----------------------------
# AI Assistant Tools
# ----------------------------
def get_sentiment_from_openai(prompt: str) -> float:
"""
Uses OpenAI's GPT-4 to analyze sentiment and return a numerical score.
"""
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an assistant that analyzes the sentiment of news articles. Rate the sentiment from -1 (very negative) to 1 (very positive)."},
{"role": "user", "content": prompt}
],
max_tokens=10,
temperature=0.0,
)
sentiment_text = response.choices[0].message['content'].strip()
# Extract numerical value from response
try:
sentiment_score = float(sentiment_text)
except ValueError:
sentiment_score = 0.0 # Default to neutral if parsing fails
# Clamp the score between -1 and 1
sentiment_score = max(min(sentiment_score, 1.0), -1.0)
return sentiment_score
except Exception as e:
st.error(f"Error in Sentiment Analysis: {e}")
return 0.0
# ----------------------------
# FSIRDM Framework Integration
# ----------------------------
def generate_fsirdm_analysis(stock_df: pd.DataFrame, historical_dfs: Dict[str, pd.DataFrame],
forecast_period: int) -> Dict[str, Any]:
"""
Generates FSIRDM analysis based on stock data and historical data.
Returns a dictionary summarizing the analysis.
"""
try:
# Example FSIRDM Analysis Components:
# Fuzzy Set Membership for Risk
risk_levels = {}
for index, row in stock_df.iterrows():
rsi = row['RSI']
if rsi < 30:
risk = "High Risk"
elif 30 <= rsi <= 70:
risk = "Moderate Risk"
else:
risk = "Low Risk"
risk_levels[row['Ticker']] = risk
# Quantitative Analysis
quantitative_analysis = {}
for ticker in stock_df['Ticker']:
hist_df = historical_dfs.get(ticker, pd.DataFrame())
if not hist_df.empty:
latest_close = hist_df['Close'].iloc[-1]
sma = hist_df['SMA_20'].iloc[-1]
ema = hist_df['EMA_20'].iloc[-1]
volatility = hist_df['Close'].std()
quantitative_analysis[ticker] = {
"Latest Close": latest_close,
"SMA 20": sma,
"EMA 20": ema,
"Volatility": volatility
}
else:
quantitative_analysis[ticker] = "No historical data available."
# Risk Assessment
risk_assessment = risk_levels
# Portfolio Optimization Suggestions
optimization_suggestions = {}
for ticker in stock_df['Ticker']:
# Simple heuristic: If RSI < 30 and high volatility, suggest to hold or buy
# If RSI > 70 and low volatility, suggest to sell
if risk_assessment[ticker] == "High Risk" and quantitative_analysis[ticker] != "No historical data available.":
optimization_suggestions[ticker] = "Consider holding or buying."
elif risk_assessment[ticker] == "Low Risk" and quantitative_analysis[ticker] != "No historical data available.":
optimization_suggestions[ticker] = "Consider selling or reducing position."
else:
optimization_suggestions[ticker] = "Hold current position."
# Combine all FSIRDM components
fsirdm_summary = {
"Risk Assessment": risk_assessment,
"Quantitative Analysis": quantitative_analysis,
"Optimization Suggestions": optimization_suggestions
}
return fsirdm_summary
except Exception as e:
st.error(f"Error generating FSIRDM analysis: {e}")
return {}
# ----------------------------
# AI Orchestrator Definition
# ----------------------------
class AIOrchestrator:
"""Orchestrates the swarm of AI agents to provide comprehensive insights."""
def __init__(self):
self.data_analysis_agent = st.session_state.data_analysis_agent
self.prediction_agent = st.session_state.prediction_agent
self.sentiment_analysis_agent = st.session_state.sentiment_analysis_agent
self.anomaly_detection_agent = st.session_state.anomaly_detection_agent
self.portfolio_optimization_agent = st.session_state.portfolio_optimization_agent
self.real_time_alerting_agent = st.session_state.real_time_alerting_agent
def generate_insights(self, stock_df: pd.DataFrame, historical_dfs: Dict[str, pd.DataFrame],
news_articles: Dict[str, List[Dict[str, Any]]], forecast_period: int) -> Dict[str, Any]:
"""
Runs all agents and aggregates their insights.
"""
insights = {}
# Data Analysis
data_trends = self.data_analysis_agent.analyze_market_trends(stock_df)
insights['Data Trends'] = data_trends
# Predictions
forecasts = self.prediction_agent.forecast_stock_trends(historical_dfs, forecast_period)
insights['Forecasts'] = forecasts
# Sentiment Analysis
sentiments = self.sentiment_analysis_agent.analyze_sentiment(news_articles)
insights['Sentiment Scores'] = sentiments
# Anomaly Detection
anomalies = self.anomaly_detection_agent.detect_anomalies(stock_df, historical_dfs)
insights['Anomalies'] = anomalies
# Portfolio Optimization
portfolio_opt = self.portfolio_optimization_agent.optimize_portfolio(stock_df, historical_dfs)
insights['Portfolio Optimization'] = portfolio_opt
# Real-Time Alerting
alerts = self.real_time_alerting_agent.generate_alerts(stock_df, sentiments, anomalies)
insights['Alerts'] = alerts
return insights
# ----------------------------
# Main Application
# ----------------------------
def run_and_visualize(ga):
"""
Runs the GA and visualizes results.
"""
with st.spinner("Running Genetic Algorithm..."):
best_path, fitness_history, mutation_rate_history = ga.run()
st.success("Genetic Algorithm completed!")
# Best Path Visualization
st.write("### Best Path Found:")
st.write(best_path)
# Fitness and Mutation Rate Trends
st.write("### Fitness and Mutation Rate Trends")
st.line_chart({
"Best Fitness": fitness_history,
"Mutation Rate": mutation_rate_history
})
def main():
# Initialize Database
initialize_database()
# Apply local CSS
local_css()
# Auto-refresh the app every 60 seconds for real-time data
count = st_autorefresh(interval=60 * 1000, limit=100, key="autorefreshcounter")
# Title and Description with enhanced styling
st.markdown("<h1 class='title'>๐ Stock Dashboard</h1>", unsafe_allow_html=True)
st.markdown("""
<p class='description'>
Explore and manage your favorite stocks. View comprehensive financial metrics, analyze historical performance with predictive insights, compare multiple stocks, stay updated with the latest news, and interact with our AI Assistant.
</p>
""", unsafe_allow_html=True)
# Sidebar Configuration
st.sidebar.header("๐ง Settings")
# Dark/Light Mode Toggle
theme = st.sidebar.radio("Theme", ("Light", "Dark"))
if theme == "Dark":
st.markdown(
"""
<style>
body {
background-color: #1e1e1e;
color: #ffffff;
}
.chat-container {
background-color: #2e2e2e;
color: #ffffff;
}
</style>
""",
unsafe_allow_html=True
)
else:
st.markdown(
"""
<style>
body {
background-color: #ffffff;
color: #000000;
}
.chat-container {
background-color: #f9f9f9;
color: #000000;
}
</style>
""",
unsafe_allow_html=True
)
# Sidebar Options for Database Management
st.sidebar.header("๐๏ธ Database Management")
db_option = st.sidebar.selectbox(
"Select an option",
("None", "View Interactions", "Clear Interactions", "Clear Cache", "Manage Portfolio")
)
if db_option == "View Interactions":
st.sidebar.markdown("### Recent Interactions")
interactions = fetch_interactions()
if interactions:
for interaction in interactions:
timestamp, user_input, assistant_response = interaction
st.sidebar.markdown(
f"- **{timestamp}**\n **You:** {user_input}\n **Assistant:** {assistant_response}\n")
else:
st.sidebar.info("No interactions to display.")
elif db_option == "Clear Interactions":
if st.sidebar.button("๐๏ธ Clear All Interactions"):
clear_interactions()
# Also reset AgentState's memory
st.session_state.real_agent.agent_state.reset_memory()
elif db_option == "Clear Cache":
if st.sidebar.button("๐๏ธ Clear All Cached Stock Data"):
clear_stock_cache()
elif db_option == "Manage Portfolio":
manage_portfolio()
# Fetch the top 10 stock tickers
with st.spinner("Fetching top 10 stocks by market capitalization..."):
top_10_tickers = get_top_10_stocks()
# User can add more stocks
st.sidebar.header("๐ Add Stocks to Dashboard")
user_tickers = st.sidebar.text_input("Enter stock tickers separated by commas (e.g., AAPL, MSFT, GOOGL):")
add_button = st.sidebar.button("โ Add Stocks", key="add_button")
remove_button = st.sidebar.button("- Remove Stocks", key="remove_button")
if add_button and user_tickers:
user_tickers_list = [ticker.strip().upper() for ticker in user_tickers.split(",")]
for ticker in user_tickers_list:
if ticker and ticker not in top_10_tickers and ticker not in fetch_portfolio():
add_to_portfolio(ticker)
st.sidebar.success("Selected stocks have been added to your portfolio.")
if remove_button and user_tickers:
user_tickers_list = [ticker.strip().upper() for ticker in user_tickers.split(",")]
for ticker in user_tickers_list:
if ticker and ticker in top_10_tickers:
remove_from_portfolio(ticker)
st.sidebar.success("Selected stocks have been removed from your portfolio.")
# Sidebar Configuration
st.sidebar.title("๐งฌ Genetic Algorithm with Fuzzy Logic")
st.sidebar.header("Configuration")
# Parameters
population_size = st.sidebar.slider("Population Size", 10, 200, 50)
generations = st.sidebar.slider("Generations", 10, 500, 100)
uncertainty_input = st.sidebar.slider("Uncertainty Level", 0.0, 1.0, 0.5)
# Graph Preparation
st.sidebar.header("Graph Configuration")
num_nodes = st.sidebar.slider("Number of Nodes", 5, 20, 10)
graph = prepare_graph(num_nodes)
# Fuzzy Logic
fuzzy_controller = FuzzyMutationController()
mutation_rate = fuzzy_controller.compute_mutation_rate(uncertainty_input)
st.sidebar.write(f"Computed Mutation Rate: {mutation_rate:.2f}")
# Visualize Fuzzy Logic
st.sidebar.header("Fuzzy Logic Visualization")
visualize_fuzzy_logic(fuzzy_controller)
# Run Genetic Algorithm
st.header("๐งฌ Genetic Algorithm Results")
ga = GeneticAlgorithm(graph, fuzzy_controller, population_size, generations)
if st.button("Run Genetic Algorithm"):
run_and_visualize(ga)
visualize_graph(graph, best_path=ga.run()[0])
# Fetch portfolio tickers
portfolio_tickers = fetch_portfolio()
# Combine top 10 and portfolio tickers, ensuring uniqueness
all_tickers = list(set(top_10_tickers + portfolio_tickers))
if not all_tickers:
st.warning("No stocks to display. Please add stocks to your portfolio.")
st.stop()
# Sidebar Options
refresh_data = st.sidebar.button("๐ Refresh Data")
download_format = st.sidebar.selectbox("Download Format", ("CSV", "JSON"))
time_period = st.sidebar.selectbox(
"Select Time Period for Historical Data",
("1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max")
)
# Refresh data if button is clicked
if refresh_data:
with st.spinner("Refreshing stock data..."):
stock_df = get_stock_data(all_tickers)
st.success("Data refreshed successfully!")
else:
with st.spinner("Fetching stock data..."):
stock_df = get_stock_data(all_tickers)
# Ensure relevant columns are numeric
numeric_cols = ["Market Cap", "Current Price (USD)", "52 Week High", "52 Week Low",
"PE Ratio", "Dividend Yield", "EPS", "Beta", "Revenue", "Net Income", "RSI"]
for col in numeric_cols:
stock_df[col] = pd.to_numeric(stock_df[col], errors='coerce').fillna(0)
# Verify data types
st.write("**Data Types After Conversion:**")
st.write(stock_df.dtypes)
# Now, compute sector_performance from numeric 'Market Cap'
sector_performance = stock_df.groupby('Sector')['Market Cap'].sum().reset_index()
# Filter out sectors with zero or negative Market Cap
sector_performance = sector_performance[sector_performance['Market Cap'] > 0]
if sector_performance.empty:
st.warning("No valid sector performance data available for visualization.")
else:
# Continue with formatting and plotting
stock_df_formatted = format_data(stock_df)
# Display the DataFrame with enhanced styling
st.subheader("๐ Stocks by Market Capitalization")
st.data_editor(
stock_df_formatted.style.set_table_styles([
{'selector': 'th',
'props': [('background-color', '#2e86de'), ('color', 'white'), ('font-size', '14px'),
('text-align', 'center')]},
{'selector': 'td', 'props': [('text-align', 'center'), ('font-size', '13px')]},
{'selector': 'tr:nth-child(even)', 'props': [('background-color', '#f2f2f2')]},
]).hide(axis='index'),
height=600,
use_container_width=True
)
# Sector Performance Treemap
st.markdown("### ๐ฅ Sector Performance Treemap")
try:
fig_heatmap = px.treemap(
sector_performance,
path=['Sector'],
values='Market Cap',
title='Market Capitalization by Sector',
color='Market Cap',
color_continuous_scale='RdBu',
hover_data={'Market Cap': ':.2f'}
)
st.plotly_chart(fig_heatmap, use_container_width=True)
except ZeroDivisionError as zde:
st.error(f"Error creating treemap: {zde}")
except Exception as e:
st.error(f"An unexpected error occurred while creating treemap: {e}")
# Comparative Metrics Visualization
st.markdown("### ๐ Comparative Metrics")
comparative_metrics = ["Market Cap", "Current Price (USD)", "52 Week High", "52 Week Low",
"PE Ratio", "Dividend Yield", "EPS", "Beta", "Revenue", "Net Income", "RSI"]
for metric in comparative_metrics:
fig = px.bar(
stock_df,
x='Ticker',
y=metric,
color='Sector',
title=f'{metric} Comparison',
labels={metric: metric, 'Ticker': 'Stock Ticker'},
text_auto='.2s' if 'Cap' in metric or 'Revenue' in metric or 'Income' in metric else '.2f'
)
st.plotly_chart(fig, use_container_width=True)
# Download Buttons
st.markdown("### ๐ฅ Download Data")
col1, col2 = st.columns(2)
with col1:
if download_format == "CSV":
csv_data = convert_df_to_csv(stock_df)
st.download_button(
label="๐ฅ Download CSV",
data=csv_data,
file_name='stocks_data.csv',
mime='text/csv',
)
with col2:
if download_format == "JSON":
json_data = convert_df_to_json(stock_df)
st.download_button(
label="๐ฅ Download JSON",
data=json_data,
file_name='stocks_data.json',
mime='application/json',
)
# Additional Features: Historical Performance
st.markdown("---")
st.markdown("### ๐ Stock Performance Over Time")
# Let user select multiple tickers to view historical data
selected_tickers = st.multiselect("๐ Select Stocks to Compare Historical Performance", all_tickers, default=[all_tickers[0]])
if not selected_tickers:
st.warning("Please select at least one stock to view historical performance.")
else:
historical_dfs = {}
for ticker in selected_tickers:
historical_df = get_historical_data(ticker, period=time_period)
if not historical_df.empty:
# Calculate additional metrics for better insights
historical_df['SMA_20'] = historical_df['Close'].rolling(window=20).mean()
historical_df['EMA_20'] = historical_df['Close'].ewm(span=20, adjust=False).mean()
historical_df['BB_upper'] = historical_df['SMA_20'] + 2 * historical_df['Close'].rolling(window=20).std()
historical_df['BB_lower'] = historical_df['SMA_20'] - 2 * historical_df['Close'].rolling(window=20).std()
delta = historical_df['Close'].diff()
up = delta.clip(lower=0)
down = -1 * delta.clip(upper=0)
roll_up = up.rolling(window=14).mean()
roll_down = down.rolling(window=14).mean()
RS = roll_up / roll_down
historical_df['RSI'] = 100.0 - (100.0 / (1.0 + RS))
historical_dfs[ticker] = historical_df
else:
historical_dfs[ticker] = pd.DataFrame()
# Interactive Comparative Candlestick Chart using Plotly
fig_candlestick = go.Figure()
for ticker in selected_tickers:
hist_df = historical_dfs.get(ticker, pd.DataFrame())
if hist_df.empty:
continue
fig_candlestick.add_trace(go.Candlestick(
x=hist_df['Date'],
open=hist_df['Open'],
high=hist_df['High'],
low=hist_df['Low'],
close=hist_df['Close'],
name=f'{ticker} Candlestick'
))
fig_candlestick.add_trace(go.Scatter(
x=hist_df['Date'],
y=hist_df['SMA_20'],
mode='lines',
line=dict(width=1),
name=f'{ticker} SMA 20'
))
fig_candlestick.add_trace(go.Scatter(
x=hist_df['Date'],
y=hist_df['EMA_20'],
mode='lines',
line=dict(width=1),
name=f'{ticker} EMA 20'
))
fig_candlestick.update_layout(
title="Comparative Candlestick Chart with Moving Averages",
xaxis_title="Date",
yaxis_title="Price (USD)",
xaxis_rangeslider_visible=False
)
st.plotly_chart(fig_candlestick, use_container_width=True)
# Comparative RSI
st.markdown("#### Comparative Relative Strength Index (RSI)")
fig_rsi = go.Figure()
for ticker in selected_tickers:
hist_df = historical_dfs.get(ticker, pd.DataFrame())
if hist_df.empty:
continue
fig_rsi.add_trace(go.Scatter(
x=hist_df['Date'],
y=hist_df['RSI'],
mode='lines',
name=f'{ticker} RSI'
))
fig_rsi.add_hline(y=70, line_dash="dash", line_color="red")
fig_rsi.add_hline(y=30, line_dash="dash", line_color="green")
fig_rsi.update_layout(
title="Relative Strength Index (RSI) Comparison",
xaxis_title="Date",
yaxis_title="RSI",
yaxis=dict(range=[0, 100])
)
st.plotly_chart(fig_rsi, use_container_width=True)
# Forecasting with Prophet for each selected ticker
st.markdown("#### ๐ฎ Future Price Prediction")
forecast_period = st.slider("Select Forecast Period (Days):", min_value=30, max_value=365, value=90,
step=30)
forecast_figs = []
# Initialize AI Orchestrator
ai_orchestrator = AIOrchestrator()
# Generate insights from agents
fsirdm_data = ai_orchestrator.generate_insights(stock_df, historical_dfs, {}, forecast_period)
for ticker in selected_tickers:
model, forecast_df = forecast_stock_price(historical_dfs.get(ticker, pd.DataFrame()), forecast_period)
if model is not None and not forecast_df.empty:
fig_forecast = plot_plotly(model, forecast_df)
fig_forecast.update_layout(
title=f"{ticker} Price Forecast for Next {forecast_period} Days",
xaxis_title="Date",
yaxis_title="Price (USD)"
)
forecast_figs.append(fig_forecast)
st.plotly_chart(fig_forecast, use_container_width=True)
else:
st.warning(f"Forecasting model could not generate predictions for {ticker}.")
# Real-Time Notifications
# Implement notifications for significant changes here if needed
# News and Analysis
st.markdown("---")
st.markdown("### ๐ฐ Latest News")
news_articles = get_stock_news(selected_tickers)
if news_articles:
for ticker, articles in news_articles.items():
st.markdown(f"#### {ticker} News")
if articles and isinstance(articles, list):
for article in articles:
st.markdown(f"**[{article['Title']}]({article['URL']})**")
try:
published_date = datetime.strptime(article['Published At'], "%Y-%m-%dT%H:%M:%SZ")
formatted_date = published_date.strftime("%B %d, %Y %H:%M")
except ValueError:
formatted_date = article['Published At']
st.markdown(f"*{formatted_date}*")
st.markdown(f"{article['Description']}")
st.markdown("---")
else:
st.info("No recent news articles found.")
else:
st.info("No recent news articles found.")
# AI Assistant Interaction
st.markdown("---")
st.markdown("### ๐ค Ask the Generis AI")
st.empty()
user_input = st.text_input("Ask a question about stocks or market trends:", type="default")
# ----------------------------
# Added "Clear Chat" Button
# ----------------------------
if st.button("๐๏ธ Clear Chat"):
clear_chat()
st.success("Chat history has been cleared.")
if user_input:
with st.spinner("Processing your request..."):
response = st.session_state.real_agent.process(
user_input, selected_tickers, stock_df, historical_dfs, news_articles, fsirdm_data
)
# Display the conversation in a chat-like format
st.markdown(f"<div class='user-message'><strong>You:</strong> {user_input}</div>",
unsafe_allow_html=True)
st.markdown(f"<div class='assistant-message'><strong>Assistant:</strong> {response}</div>",
unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Display AI Generated Insights
st.markdown("---")
st.markdown("### ๐ค AI Generated Insights")
ai_orchestrator = AIOrchestrator()
insights = ai_orchestrator.generate_insights(stock_df, historical_dfs, news_articles, forecast_period)
# Display Data Trends
st.subheader("๐ Data Trends")
data_trends = insights.get('Data Trends', {})
if data_trends:
st.json(data_trends)
else:
st.info("No data trends available.")
# Display Forecasts
st.subheader("๐ฎ Forecasts")
forecasts = insights.get('Forecasts', {})
if forecasts:
for ticker, forecast in forecasts.items():
st.markdown(f"**{ticker} Forecast:**")
if isinstance(forecast, list):
forecast_df = pd.DataFrame(forecast)
st.dataframe(forecast_df)
else:
st.write(forecast)
else:
st.info("No forecasts available.")
# Display Sentiment Scores
st.subheader("๐ Sentiment Scores")
sentiments = insights.get('Sentiment Scores', {})
if sentiments:
st.json(sentiments)
else:
st.info("No sentiment scores available.")
# Display Anomalies
st.subheader("โ ๏ธ Anomalies Detected")
anomalies = insights.get('Anomalies', {})
if anomalies:
for ticker, anomaly_dates in anomalies.items():
st.markdown(f"**{ticker}:** {', '.join(map(str, anomaly_dates))}")
else:
st.info("No anomalies detected.")
# Display Portfolio Optimization
st.subheader("๐ผ Portfolio Optimization")
portfolio_opt = insights.get('Portfolio Optimization', {})
if portfolio_opt:
st.json(portfolio_opt)
else:
st.info("No portfolio optimization available.")
# Display Alerts
st.subheader("๐จ Alerts")
alerts = insights.get('Alerts', {})
if alerts:
for ticker, alert_list in alerts.items():
if alert_list:
for alert in alert_list:
st.warning(f"{ticker}: {alert}")
else:
st.info("No alerts generated.")
# Footer
st.markdown("---")
st.markdown("<p class='footer'>ยฉ 2024 Your Company Name. All rights reserved.</p>", unsafe_allow_html=True)
def forecast_stock_price(historical_df: pd.DataFrame, periods: int = 90) -> Tuple[Any, pd.DataFrame]:
"""
Uses Facebook's Prophet to forecast future stock prices.
Returns both the fitted model and the forecast DataFrame.
"""
try:
if historical_df.empty:
return None, pd.DataFrame()
df_prophet = historical_df[['Date', 'Close']].rename(columns={'Date': 'ds', 'Close': 'y'})
model = Prophet(daily_seasonality=False, yearly_seasonality=True, weekly_seasonality=True)
model.fit(df_prophet)
future = model.make_future_dataframe(periods=periods)
forecast = model.predict(future)
return model, forecast # Return both model and forecast
except Exception as e:
st.error(f"Error in forecasting: {e}")
return None, pd.DataFrame()
def clear_chat():
"""
Clears the conversation history by deleting interactions from the database
and resetting the AgentState's memory.
"""
clear_interactions()
st.session_state.real_agent.agent_state.reset_memory()
def manage_portfolio():
"""
Manages the user's portfolio by allowing addition and removal of stocks.
"""
st.header("๐ Manage Your Portfolio")
portfolio = fetch_portfolio()
if portfolio:
st.subheader("Your Portfolio:")
portfolio_df = pd.DataFrame(portfolio, columns=["Ticker"])
st.data_editor(portfolio_df, height=500, use_container_width=True, key="portfolio_editor")
remove_tickers = st.multiselect(label="Select stocks to remove from your portfolio:", options=portfolio)
if st.button("๐๏ธ Remove Selected Stocks") and remove_tickers:
for ticker in remove_tickers:
remove_from_portfolio(ticker)
st.success("Selected stocks have been removed from your portfolio.")
else:
st.info("Your portfolio is empty. Add stocks to get started.")
st.markdown("---")
st.subheader("Add New Stocks to Portfolio")
new_ticker = st.text_input("Enter a stock ticker to add:")
if st.button("โ Add to Portfolio"):
if new_ticker:
add_to_portfolio(new_ticker)
else:
st.warning("Please enter a valid stock ticker.")
def get_top_10_stocks() -> List[str]:
"""
Fetches the top 10 stocks by market capitalization using Financial Modeling Prep API.
Utilizes the database cache if available and not expired.
"""
try:
# Check if cache exists for 'TOP10'
conn = sqlite3.connect(DATABASE)
cursor = conn.cursor()
cursor.execute("""
SELECT fetched_at, data
FROM stock_cache
WHERE ticker = 'TOP10'
""")
row = cursor.fetchone()
conn.close()
use_cache = False
if row:
fetched_at, data = row
fetched_time = datetime.fromisoformat(fetched_at).date()
today = datetime.utcnow().date()
if (today - fetched_time).days < 1: # 1 day TTL
use_cache = True
tickers = json.loads(data)
if not use_cache:
if not update_api_usage("FMP"):
st.warning("Financial Modeling Prep API rate limit exceeded. Cannot fetch top 10 stocks.")
return []
url = f"https://financialmodelingprep.com/api/v3/stock-screener?marketCapMoreThan=1000000000&limit=100&apikey={FMP_API_KEY}"
response = requests.get(url)
response.raise_for_status()
data = response.json()
if not isinstance(data, list):
st.error("Unexpected response format from Financial Modeling Prep API.")
return []
sorted_data = sorted(data, key=lambda x: x.get('marketCap', 0), reverse=True)
top_10 = sorted_data[:10]
tickers = [stock['symbol'] for stock in top_10]
# Cache the top 10 tickers
insert_stock_cache('TOP10', tickers)
return tickers
except Exception as e:
st.error(f"Error fetching top 10 stocks: {e}")
return []
@st.cache_data(ttl=600)
def get_stock_data(tickers: List[str]) -> pd.DataFrame:
"""
Fetches detailed stock data for the given list of tickers using yfinance.
Utilizes the database cache if available.
"""
# Use asyncio to fetch data concurrently
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
responses = loop.run_until_complete(fetch_all_stock_data(tickers))
loop.close()
stock_info = []
for ticker, info in responses:
stock_info.append({
"Ticker": ticker,
"Name": info.get("shortName", "N/A"),
"Sector": info.get("sector", "N/A"),
"Industry": info.get("industry", "N/A"),
"Market Cap": info.get("marketCap", 0), # Default to 0 if missing
"Current Price (USD)": info.get("currentPrice", 0),
"52 Week High": info.get("fiftyTwoWeekHigh", 0),
"52 Week Low": info.get("fiftyTwoWeekLow", 0),
"PE Ratio": info.get("trailingPE", 0),
"Dividend Yield": info.get("dividendYield", 0),
"EPS": info.get("trailingEps", 0),
"Beta": info.get("beta", 0),
"Revenue": info.get("totalRevenue", 0),
"Net Income": info.get("netIncomeToCommon", 0),
"RSI": calculate_rsi(info.get("symbol", "N/A"), period=14) # Calculate RSI
})
df = pd.DataFrame(stock_info)
# Data Cleaning: Ensure all numeric columns are indeed numeric
numeric_cols = ["Market Cap", "Current Price (USD)", "52 Week High", "52 Week Low",
"PE Ratio", "Dividend Yield", "EPS", "Beta", "Revenue", "Net Income", "RSI"]
for col in numeric_cols:
df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
return df
def calculate_rsi(ticker: str, period: int = 14) -> float:
"""
Calculates the Relative Strength Index (RSI) for a given ticker.
"""
try:
stock = yf.Ticker(ticker)
hist = stock.history(period="1y")
if hist.empty:
return 0.0
delta = hist['Close'].diff()
up = delta.clip(lower=0)
down = -1 * delta.clip(upper=0)
roll_up = up.rolling(window=period).mean()
roll_down = down.rolling(window=period).mean()
RS = roll_up / roll_down
RSI = 100.0 - (100.0 / (1.0 + RS))
return RSI.iloc[-1] if not RSI.empty else 0.0
except Exception as e:
st.error(f"Error calculating RSI for {ticker}: {e}")
return 0.0
@st.cache_data(ttl=600)
def get_historical_data(ticker: str, period: str = "1mo") -> pd.DataFrame:
"""
Fetches historical stock data.
"""
try:
stock = yf.Ticker(ticker)
hist = stock.history(period=period)
if hist.empty:
st.warning(f"No historical data available for {ticker} in the selected period.")
return pd.DataFrame()
hist.reset_index(inplace=True)
hist['Date'] = hist['Date'].dt.date
return hist
except Exception as e:
st.error(f"Error fetching historical data for {ticker}: {e}")
return pd.DataFrame()
@st.cache_data(ttl=600)
def get_stock_news(tickers: List[str]) -> Dict[str, List[Dict[str, Any]]]:
"""
Fetches latest news for the given tickers using NewsAPI.
Returns a dictionary with tickers as keys and list of articles as values.
"""
news_dict = {}
for ticker in tickers:
if not update_api_usage("NewsAPI"):
st.warning("NewsAPI rate limit exceeded. Cannot fetch latest news.")
news_dict[ticker] = []
continue
try:
stock = yf.Ticker(ticker)
company_name = stock.info.get('shortName', ticker)
query = f"{ticker} OR \"{company_name}\""
articles = newsapi.get_everything(
q=query,
language='en',
sort_by='publishedAt',
page_size=5
)
news = []
for article in articles.get('articles', []):
news.append({
"Title": article['title'],
"Description": article['description'],
"URL": article['url'],
"Published At": article['publishedAt']
})
news_dict[ticker] = news
except Exception as e:
st.error(f"Error fetching news for {ticker}: {e}")
news_dict[ticker] = []
return news_dict
def convert_df_to_csv(df: pd.DataFrame) -> bytes:
"""Converts DataFrame to CSV."""
return df.to_csv(index=False).encode('utf-8')
def convert_df_to_json(df: pd.DataFrame) -> bytes:
"""Converts DataFrame to JSON."""
return df.to_json(orient='records', indent=4).encode('utf-8')
def format_data(df: pd.DataFrame) -> pd.DataFrame:
"""
Formats numerical columns for better readability.
"""
df_formatted = df.copy()
df_formatted["Market Cap"] = df_formatted["Market Cap"].apply(
lambda x: f"${x:,.2f}" if isinstance(x, (int, float)) else "N/A"
)
df_formatted["Current Price (USD)"] = df_formatted["Current Price (USD)"].apply(
lambda x: f"${x:,.2f}" if isinstance(x, (int, float)) else "N/A"
)
df_formatted["52 Week High"] = df_formatted["52 Week High"].apply(
lambda x: f"${x:,.2f}" if isinstance(x, (int, float)) else "N/A"
)
df_formatted["52 Week Low"] = df_formatted["52 Week Low"].apply(
lambda x: f"${x:,.2f}" if isinstance(x, (int, float)) else "N/A"
)
df_formatted["PE Ratio"] = df_formatted["PE Ratio"].apply(
lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else "N/A"
)
df_formatted["Dividend Yield"] = df_formatted["Dividend Yield"].apply(
lambda x: f"{x:.2%}" if isinstance(x, (int, float)) else "N/A"
)
df_formatted["EPS"] = df_formatted["EPS"].apply(
lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else "N/A"
)
df_formatted["Beta"] = df_formatted["Beta"].apply(
lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else "N/A"
)
df_formatted["Revenue"] = df_formatted["Revenue"].apply(
lambda x: f"${x:,.2f}" if isinstance(x, (int, float)) else "N/A"
)
df_formatted["Net Income"] = df_formatted["Net Income"].apply(
lambda x: f"${x:,.2f}" if isinstance(x, (int, float)) else "N/A"
)
df_formatted["RSI"] = df_formatted["RSI"].apply(
lambda x: f"{x:.2f}" if isinstance(x, (int, float)) else "N/A"
)
return df_formatted
def get_stock_price(ticker: str) -> str:
"""
Fetches the current price of the given ticker.
"""
try:
stock = yf.Ticker(ticker)
price = stock.info.get('currentPrice', None)
if price is None:
return f"Could not fetch the current price for {ticker.upper()}."
return f"The current price of {ticker.upper()} is ${price:.2f}"
except Exception as e:
return f"Error fetching stock price for {ticker.upper()}: {e}"
def get_stock_summary(ticker: str) -> str:
"""
Fetches a summary of the given ticker.
"""
try:
stock = yf.Ticker(ticker)
info = stock.info
summary = {
"Name": info.get("shortName", "N/A"),
"Sector": info.get("sector", "N/A"),
"Industry": info.get("industry", "N/A"),
"Current Price (USD)": info.get("currentPrice", "N/A"),
"52 Week High": info.get("fiftyTwoWeekHigh", "N/A"),
"52 Week Low": info.get("fiftyTwoWeekLow", "N/A"),
"Market Cap": info.get("marketCap", "N/A"),
}
response = "\n".join([f"{key}: {value}" for key, value in summary.items()])
return response
except Exception as e:
return f"Error fetching summary for {ticker.upper()}: {e}"
def get_latest_news(query: str) -> List[Dict[str, Any]]:
"""
Fetches the latest news articles based on the query.
"""
if not update_api_usage("NewsAPI"):
st.warning("NewsAPI rate limit exceeded. Cannot fetch latest news.")
return []
try:
articles = newsapi.get_everything(q=query, language='en', sort_by='publishedAt', page_size=3)
if not articles['articles']:
return []
news_list: List[Dict[str, Any]] = []
for article in articles['articles']:
news_list.append({
"Title": article['title'],
"Description": article['description'],
"URL": article['url'],
"Published At": article['publishedAt']
})
return news_list
except Exception as e:
st.error(f"Error fetching news for {query}: {e}")
return []
# ----------------------------
# Run the Application
# ----------------------------
if __name__ == "__main__":
main() |