File size: 7,286 Bytes
b1fdcc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import logging
import librosa
import numpy as np
import soundfile as sf
import torch
from stqdm import stqdm
import streamlit as st
from pydub import AudioSegment

from app.service.vocal_remover import nets


if os.environ.get("LIMIT_CPU", False):
    torch.set_num_threads(1)


def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32):
    if min_range < fade_size * 2:
        raise ValueError("min_range must be >= fade_size * 2")

    idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
    start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
    end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
    artifact_idx = np.where(end_idx - start_idx > min_range)[0]
    weight = np.zeros_like(y_mask)
    if len(artifact_idx) > 0:
        start_idx = start_idx[artifact_idx]
        end_idx = end_idx[artifact_idx]
        old_e = None
        for s, e in zip(start_idx, end_idx):
            if old_e is not None and s - old_e < fade_size:
                s = old_e - fade_size * 2

            if s != 0:
                weight[:, :, s : s + fade_size] = np.linspace(0, 1, fade_size)
            else:
                s -= fade_size

            if e != y_mask.shape[2]:
                weight[:, :, e - fade_size : e] = np.linspace(1, 0, fade_size)
            else:
                e += fade_size

            weight[:, :, s + fade_size : e - fade_size] = 1
            old_e = e

    v_mask = 1 - y_mask
    y_mask += weight * v_mask

    return y_mask


def make_padding(width, cropsize, offset):
    left = offset
    roi_size = cropsize - offset * 2
    if roi_size == 0:
        roi_size = cropsize
    right = roi_size - (width % roi_size) + left

    return left, right, roi_size


def wave_to_spectrogram(wave, hop_length, n_fft):
    wave_left = np.asfortranarray(wave[0])
    wave_right = np.asfortranarray(wave[1])

    spec_left = librosa.stft(wave_left, n_fft=n_fft, hop_length=hop_length)
    spec_right = librosa.stft(wave_right, n_fft=n_fft, hop_length=hop_length)
    spec = np.asfortranarray([spec_left, spec_right])

    return spec


def spectrogram_to_wave(spec, hop_length=1024):
    if spec.ndim == 2:
        wave = librosa.istft(spec, hop_length=hop_length)
    elif spec.ndim == 3:
        spec_left = np.asfortranarray(spec[0])
        spec_right = np.asfortranarray(spec[1])

        wave_left = librosa.istft(spec_left, hop_length=hop_length)
        wave_right = librosa.istft(spec_right, hop_length=hop_length)
        wave = np.asfortranarray([wave_left, wave_right])

    return wave


class Separator(object):
    def __init__(self, model, device, batchsize, cropsize, postprocess=False, progress_bar=None):
        self.model = model
        self.offset = model.offset
        self.device = device
        self.batchsize = batchsize
        self.cropsize = cropsize
        self.postprocess = postprocess
        self.progress_bar = progress_bar

    def _separate(self, X_mag_pad, roi_size):
        X_dataset = []
        patches = (X_mag_pad.shape[2] - 2 * self.offset) // roi_size
        for i in range(patches):
            start = i * roi_size
            X_mag_crop = X_mag_pad[:, :, start : start + self.cropsize]
            X_dataset.append(X_mag_crop)

        X_dataset = np.asarray(X_dataset)

        self.model.eval()
        with torch.no_grad():
            mask = []
            # To reduce the overhead, dataloader is not used.
            for i in stqdm(
                range(0, patches, self.batchsize),
                st_container=self.progress_bar,
                gui=False,
            ):
                X_batch = X_dataset[i : i + self.batchsize]
                X_batch = torch.from_numpy(X_batch).to(self.device)

                pred = self.model.predict_mask(X_batch)

                pred = pred.detach().cpu().numpy()
                pred = np.concatenate(pred, axis=2)
                mask.append(pred)

            mask = np.concatenate(mask, axis=2)

        return mask

    def _preprocess(self, X_spec):
        X_mag = np.abs(X_spec)
        X_phase = np.angle(X_spec)

        return X_mag, X_phase

    def _postprocess(self, mask, X_mag, X_phase):
        if self.postprocess:
            mask = merge_artifacts(mask)

        y_spec = mask * X_mag * np.exp(1.0j * X_phase)
        v_spec = (1 - mask) * X_mag * np.exp(1.0j * X_phase)

        return y_spec, v_spec

    def separate(self, X_spec):
        X_mag, X_phase = self._preprocess(X_spec)

        n_frame = X_mag.shape[2]
        pad_l, pad_r, roi_size = make_padding(n_frame, self.cropsize, self.offset)
        X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
        X_mag_pad /= X_mag_pad.max()

        mask = self._separate(X_mag_pad, roi_size)
        mask = mask[:, :, :n_frame]

        y_spec, v_spec = self._postprocess(mask, X_mag, X_phase)

        return y_spec, v_spec


@st.cache_resource(show_spinner=False)
def load_model(pretrained_model, n_fft=2048):
    model = nets.CascadedNet(n_fft, 32, 128)
    if torch.cuda.is_available():
        device = torch.device("cuda:0")
        model.to(device)
    # elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
    #     device = torch.device("mps")
    #     model.to(device)
    else:
        device = torch.device("cpu")
    model.load_state_dict(torch.load(pretrained_model, map_location=device))
    return model, device


# @st.cache_data(show_spinner=False)
def separate(
    input,
    model,
    device,
    output_dir,
    batchsize=4,
    cropsize=256,
    postprocess=False,
    hop_length=1024,
    n_fft=2048,
    sr=44100,
    progress_bar=None,
    only_no_vocals=False,
):
    X, sr = librosa.load(input, sr=sr, mono=False, dtype=np.float32, res_type="kaiser_fast")
    basename = os.path.splitext(os.path.basename(input))[0]

    if X.ndim == 1:
        # mono to stereo
        X = np.asarray([X, X])

    X_spec = wave_to_spectrogram(X, hop_length, n_fft)

    with torch.no_grad():
        sp = Separator(model, device, batchsize, cropsize, postprocess, progress_bar=progress_bar)
        y_spec, v_spec = sp.separate(X_spec)

    base_dir = f"{output_dir}/vocal_remover/{basename}"
    os.makedirs(base_dir, exist_ok=True)

    wave = spectrogram_to_wave(y_spec, hop_length=hop_length)
    try:
        sf.write(f"{base_dir}/no_vocals.mp3", wave.T, sr)
    except Exception:
        logging.error("Failed to write no_vocals.mp3, trying pydub...")
        pydub_write(wave, f"{base_dir}/no_vocals.mp3", sr)
    if only_no_vocals:
        return
    wave = spectrogram_to_wave(v_spec, hop_length=hop_length)
    try:
        sf.write(f"{base_dir}/vocals.mp3", wave.T, sr)
    except Exception:
        logging.error("Failed to write vocals.mp3, trying pydub...")
        pydub_write(wave, f"{base_dir}/vocals.mp3", sr)


def pydub_write(wave, output_path, frame_rate, audio_format="mp3"):
    # Ensure the wave data is in the right format for pydub (mono and 16-bit depth)
    wave_16bit = (wave * 32767).astype(np.int16)

    audio_segment = AudioSegment(
        wave_16bit.tobytes(),
        frame_rate=frame_rate,
        sample_width=wave_16bit.dtype.itemsize,
        channels=1,
    )
    audio_segment.export(output_path, format=audio_format)