File size: 5,387 Bytes
e359f8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import { prebuiltAppConfig, CreateMLCEngine } from "@mlc-ai/web-llm";
import hljs from "highlight.js";
import ace from "ace-builds";
// Required for ace to resolve the module correctly
require("ace-builds/src-noconflict/mode-javascript");
require("ace-builds/webpack-resolver");
let engine = null;
let useCustomGrammar = false;
document.addEventListener("DOMContentLoaded", () => {
const modelSelection = document.getElementById("model-selection");
const promptTextarea = document.getElementById("prompt");
const outputDiv = document.getElementById("output");
const statsParagraph = document.getElementById("stats");
// Populate model selection dropdown
const availableModels = prebuiltAppConfig.model_list
.filter(
(m) =>
m.model_id.startsWith("SmolLM2")
)
.map((m) => m.model_id);
let selectedModel = availableModels[0];
availableModels.forEach((modelId) => {
const option = document.createElement("option");
option.value = modelId;
option.textContent = modelId;
modelSelection.appendChild(option);
});
modelSelection.value = selectedModel;
modelSelection.onchange = (e) => {
selectedModel = e.target.value;
engine = null; // Reset the engine when the model changes
};
// Setup JSON Schema Editor
const jsonSchemaEditor = ace.edit("schema", {
mode: "ace/mode/javascript",
theme: "ace/theme/github",
wrap: true,
});
// Set default schema
jsonSchemaEditor.setValue(`{
"title": "GitHubIssue",
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "The title of the issue"
},
"description": {
"type": "string",
"description": "Detailed description of the issue"
},
"labels": {
"type": "array",
"items": {
"type": "string",
"enum": ["bug", "enhancement", "documentation", "high-priority", "security"]
},
"description": "Labels to categorize the issue"
},
"priority": {
"type": "string",
"enum": ["low", "medium", "high", "critical"],
"description": "Priority level of the issue"
},
"assignees": {
"type": "array",
"items": {
"type": "string"
},
"maxItems": 3,
"description": "GitHub usernames of assigned users (max 3)"
},
"estimated_time": {
"type": "string",
"pattern": "^[0-9]+[hdwm]$",
"description": "Estimated time to resolve (e.g., '2h', '3d', '1w', '1m')"
}
},
"required": [
"title",
"description",
"priority",
"labels"
]
}`);
// Set default prompt
promptTextarea.value = `Create a detailed issue for the following problem:
The login page is not properly handling password reset requests. Users report that they are not receiving the password reset emails, and when they do receive them, the reset links are sometimes expired. This is affecting about 20% of our users and needs immediate attention.
Please include appropriate labels, priority level, and time estimation.`;
// Generate button click handler
document.getElementById("generate").onclick = async () => {
try {
outputDiv.innerHTML = '<div class="loading">Initializing model...</div>';
if (!engine) {
engine = await CreateMLCEngine(selectedModel, {
initProgressCallback: (progress) => {
console.log(progress);
outputDiv.innerHTML = `<div class="loading">${progress.text}</div>`;
},
});
}
const schemaInput = jsonSchemaEditor.getValue();
const schema = JSON.stringify(JSON.parse(schemaInput)); // Validate JSON
const response_format = { type: "json_object", schema };
const request = {
stream: true,
stream_options: { include_usage: true },
messages: [{ role: "user", content: promptTextarea.value }],
max_tokens: 512,
response_format,
};
let curMessage = "";
let usage = null;
outputDiv.innerHTML = '<div class="loading">Generating response...</div>';
const generator = await engine.chatCompletion(request);
for await (const chunk of generator) {
const curDelta = chunk.choices[0]?.delta.content;
if (curDelta) curMessage += curDelta;
if (chunk.usage) {
console.log(chunk.usage);
usage = chunk.usage;
}
outputDiv.innerHTML = `<pre><code class="language-json">${curMessage}</code></pre>`;
}
const finalMessage = await engine.getMessage();
outputDiv.innerHTML = hljs.highlight(finalMessage, {
language: "json",
}).value;
if (usage) {
const statsTextParts = [];
if (usage.extra.prefill_tokens_per_s) {
statsTextParts.push(`Prefill Speed: ${usage.extra.prefill_tokens_per_s.toFixed(1)} tok/s`);
}
if (usage.extra.decode_tokens_per_s) {
statsTextParts.push(`Decode Speed: ${usage.extra.decode_tokens_per_s.toFixed(1)} tok/s`);
}
statsParagraph.textContent = statsTextParts.join(" | ");
statsParagraph.classList.remove("hidden");
}
} catch (error) {
console.error("Generation error:", error);
outputDiv.innerHTML = `<div class="error">Error: ${error.message}</div>`;
}
};
});
|