Spaces:
Running
Running
File size: 10,101 Bytes
03c0888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import requests
import json
import time
import sys
import base64
import os
from typing import Dict, Any
class Crawl4AiTester:
def __init__(self, base_url: str = "http://localhost:11235"):
self.base_url = base_url
def submit_and_wait(self, request_data: Dict[str, Any], timeout: int = 300) -> Dict[str, Any]:
# Submit crawl job
response = requests.post(f"{self.base_url}/crawl", json=request_data)
task_id = response.json()["task_id"]
print(f"Task ID: {task_id}")
# Poll for result
start_time = time.time()
while True:
if time.time() - start_time > timeout:
raise TimeoutError(f"Task {task_id} did not complete within {timeout} seconds")
result = requests.get(f"{self.base_url}/task/{task_id}")
status = result.json()
if status["status"] == "failed":
print("Task failed:", status.get("error"))
raise Exception(f"Task failed: {status.get('error')}")
if status["status"] == "completed":
return status
time.sleep(2)
def test_docker_deployment(version="basic"):
tester = Crawl4AiTester()
print(f"Testing Crawl4AI Docker {version} version")
# Health check with timeout and retry
max_retries = 5
for i in range(max_retries):
try:
health = requests.get(f"{tester.base_url}/health", timeout=10)
print("Health check:", health.json())
break
except requests.exceptions.RequestException as e:
if i == max_retries - 1:
print(f"Failed to connect after {max_retries} attempts")
sys.exit(1)
print(f"Waiting for service to start (attempt {i+1}/{max_retries})...")
time.sleep(5)
# Test cases based on version
test_basic_crawl(tester)
# if version in ["full", "transformer"]:
# test_cosine_extraction(tester)
# test_js_execution(tester)
# test_css_selector(tester)
# test_structured_extraction(tester)
# test_llm_extraction(tester)
# test_llm_with_ollama(tester)
# test_screenshot(tester)
def test_basic_crawl(tester: Crawl4AiTester):
print("\n=== Testing Basic Crawl ===")
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 10
}
result = tester.submit_and_wait(request)
print(f"Basic crawl result length: {len(result['result']['markdown'])}")
assert result["result"]["success"]
assert len(result["result"]["markdown"]) > 0
def test_js_execution(tester: Crawl4AiTester):
print("\n=== Testing JS Execution ===")
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 8,
"js_code": [
"const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"
],
"wait_for": "article.tease-card:nth-child(10)",
"crawler_params": {
"headless": True
}
}
result = tester.submit_and_wait(request)
print(f"JS execution result length: {len(result['result']['markdown'])}")
assert result["result"]["success"]
def test_css_selector(tester: Crawl4AiTester):
print("\n=== Testing CSS Selector ===")
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 7,
"css_selector": ".wide-tease-item__description",
"crawler_params": {
"headless": True
},
"extra": {"word_count_threshold": 10}
}
result = tester.submit_and_wait(request)
print(f"CSS selector result length: {len(result['result']['markdown'])}")
assert result["result"]["success"]
def test_structured_extraction(tester: Crawl4AiTester):
print("\n=== Testing Structured Extraction ===")
schema = {
"name": "Coinbase Crypto Prices",
"baseSelector": ".cds-tableRow-t45thuk",
"fields": [
{
"name": "crypto",
"selector": "td:nth-child(1) h2",
"type": "text",
},
{
"name": "symbol",
"selector": "td:nth-child(1) p",
"type": "text",
},
{
"name": "price",
"selector": "td:nth-child(2)",
"type": "text",
}
],
}
request = {
"urls": "https://www.coinbase.com/explore",
"priority": 9,
"extraction_config": {
"type": "json_css",
"params": {
"schema": schema
}
}
}
result = tester.submit_and_wait(request)
extracted = json.loads(result["result"]["extracted_content"])
print(f"Extracted {len(extracted)} items")
print("Sample item:", json.dumps(extracted[0], indent=2))
assert result["result"]["success"]
assert len(extracted) > 0
def test_llm_extraction(tester: Crawl4AiTester):
print("\n=== Testing LLM Extraction ===")
schema = {
"type": "object",
"properties": {
"model_name": {
"type": "string",
"description": "Name of the OpenAI model."
},
"input_fee": {
"type": "string",
"description": "Fee for input token for the OpenAI model."
},
"output_fee": {
"type": "string",
"description": "Fee for output token for the OpenAI model."
}
},
"required": ["model_name", "input_fee", "output_fee"]
}
request = {
"urls": "https://openai.com/api/pricing",
"priority": 8,
"extraction_config": {
"type": "llm",
"params": {
"provider": "openai/gpt-4o-mini",
"api_token": os.getenv("OPENAI_API_KEY"),
"schema": schema,
"extraction_type": "schema",
"instruction": """From the crawled content, extract all mentioned model names along with their fees for input and output tokens."""
}
},
"crawler_params": {"word_count_threshold": 1}
}
try:
result = tester.submit_and_wait(request)
extracted = json.loads(result["result"]["extracted_content"])
print(f"Extracted {len(extracted)} model pricing entries")
print("Sample entry:", json.dumps(extracted[0], indent=2))
assert result["result"]["success"]
except Exception as e:
print(f"LLM extraction test failed (might be due to missing API key): {str(e)}")
def test_llm_with_ollama(tester: Crawl4AiTester):
print("\n=== Testing LLM with Ollama ===")
schema = {
"type": "object",
"properties": {
"article_title": {
"type": "string",
"description": "The main title of the news article"
},
"summary": {
"type": "string",
"description": "A brief summary of the article content"
},
"main_topics": {
"type": "array",
"items": {"type": "string"},
"description": "Main topics or themes discussed in the article"
}
}
}
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 8,
"extraction_config": {
"type": "llm",
"params": {
"provider": "ollama/llama2",
"schema": schema,
"extraction_type": "schema",
"instruction": "Extract the main article information including title, summary, and main topics."
}
},
"extra": {"word_count_threshold": 1},
"crawler_params": {"verbose": True}
}
try:
result = tester.submit_and_wait(request)
extracted = json.loads(result["result"]["extracted_content"])
print("Extracted content:", json.dumps(extracted, indent=2))
assert result["result"]["success"]
except Exception as e:
print(f"Ollama extraction test failed: {str(e)}")
def test_cosine_extraction(tester: Crawl4AiTester):
print("\n=== Testing Cosine Extraction ===")
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 8,
"extraction_config": {
"type": "cosine",
"params": {
"semantic_filter": "business finance economy",
"word_count_threshold": 10,
"max_dist": 0.2,
"top_k": 3
}
}
}
try:
result = tester.submit_and_wait(request)
extracted = json.loads(result["result"]["extracted_content"])
print(f"Extracted {len(extracted)} text clusters")
print("First cluster tags:", extracted[0]["tags"])
assert result["result"]["success"]
except Exception as e:
print(f"Cosine extraction test failed: {str(e)}")
def test_screenshot(tester: Crawl4AiTester):
print("\n=== Testing Screenshot ===")
request = {
"urls": "https://www.nbcnews.com/business",
"priority": 5,
"screenshot": True,
"crawler_params": {
"headless": True
}
}
result = tester.submit_and_wait(request)
print("Screenshot captured:", bool(result["result"]["screenshot"]))
if result["result"]["screenshot"]:
# Save screenshot
screenshot_data = base64.b64decode(result["result"]["screenshot"])
with open("test_screenshot.jpg", "wb") as f:
f.write(screenshot_data)
print("Screenshot saved as test_screenshot.jpg")
assert result["result"]["success"]
if __name__ == "__main__":
version = sys.argv[1] if len(sys.argv) > 1 else "basic"
# version = "full"
test_docker_deployment(version) |