File size: 10,101 Bytes
03c0888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import requests
import json
import time
import sys
import base64
import os
from typing import Dict, Any

class Crawl4AiTester:
    def __init__(self, base_url: str = "http://localhost:11235"):
        self.base_url = base_url
        
    def submit_and_wait(self, request_data: Dict[str, Any], timeout: int = 300) -> Dict[str, Any]:
        # Submit crawl job
        response = requests.post(f"{self.base_url}/crawl", json=request_data)
        task_id = response.json()["task_id"]
        print(f"Task ID: {task_id}")
        
        # Poll for result
        start_time = time.time()
        while True:
            if time.time() - start_time > timeout:
                raise TimeoutError(f"Task {task_id} did not complete within {timeout} seconds")
                
            result = requests.get(f"{self.base_url}/task/{task_id}")
            status = result.json()
            
            if status["status"] == "failed":
                print("Task failed:", status.get("error"))
                raise Exception(f"Task failed: {status.get('error')}")
                
            if status["status"] == "completed":
                return status
                
            time.sleep(2)

def test_docker_deployment(version="basic"):
    tester = Crawl4AiTester()
    print(f"Testing Crawl4AI Docker {version} version")
    
    # Health check with timeout and retry
    max_retries = 5
    for i in range(max_retries):
        try:
            health = requests.get(f"{tester.base_url}/health", timeout=10)
            print("Health check:", health.json())
            break
        except requests.exceptions.RequestException as e:
            if i == max_retries - 1:
                print(f"Failed to connect after {max_retries} attempts")
                sys.exit(1)
            print(f"Waiting for service to start (attempt {i+1}/{max_retries})...")
            time.sleep(5)
    
    # Test cases based on version
    test_basic_crawl(tester)
    
    # if version in ["full", "transformer"]:
    #     test_cosine_extraction(tester)

    # test_js_execution(tester)
    # test_css_selector(tester)
    # test_structured_extraction(tester)
    # test_llm_extraction(tester)
    # test_llm_with_ollama(tester)
    # test_screenshot(tester)
    

def test_basic_crawl(tester: Crawl4AiTester):
    print("\n=== Testing Basic Crawl ===")
    request = {
        "urls": "https://www.nbcnews.com/business",
        "priority": 10
    }
    
    result = tester.submit_and_wait(request)
    print(f"Basic crawl result length: {len(result['result']['markdown'])}")
    assert result["result"]["success"]
    assert len(result["result"]["markdown"]) > 0

def test_js_execution(tester: Crawl4AiTester):
    print("\n=== Testing JS Execution ===")
    request = {
        "urls": "https://www.nbcnews.com/business",
        "priority": 8,
        "js_code": [
            "const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"
        ],
        "wait_for": "article.tease-card:nth-child(10)",
        "crawler_params": {
            "headless": True
        }
    }
    
    result = tester.submit_and_wait(request)
    print(f"JS execution result length: {len(result['result']['markdown'])}")
    assert result["result"]["success"]

def test_css_selector(tester: Crawl4AiTester):
    print("\n=== Testing CSS Selector ===")
    request = {
        "urls": "https://www.nbcnews.com/business",
        "priority": 7,
        "css_selector": ".wide-tease-item__description",
        "crawler_params": {
            "headless": True
        },
        "extra": {"word_count_threshold": 10}
        
    }
    
    result = tester.submit_and_wait(request)
    print(f"CSS selector result length: {len(result['result']['markdown'])}")
    assert result["result"]["success"]

def test_structured_extraction(tester: Crawl4AiTester):
    print("\n=== Testing Structured Extraction ===")
    schema = {
        "name": "Coinbase Crypto Prices",
        "baseSelector": ".cds-tableRow-t45thuk",
        "fields": [
            {
                "name": "crypto",
                "selector": "td:nth-child(1) h2",
                "type": "text",
            },
            {
                "name": "symbol",
                "selector": "td:nth-child(1) p",
                "type": "text",
            },
            {
                "name": "price",
                "selector": "td:nth-child(2)",
                "type": "text",
            }
        ],
    }
    
    request = {
        "urls": "https://www.coinbase.com/explore",
        "priority": 9,
        "extraction_config": {
            "type": "json_css",
            "params": {
                "schema": schema
            }
        }
    }
    
    result = tester.submit_and_wait(request)
    extracted = json.loads(result["result"]["extracted_content"])
    print(f"Extracted {len(extracted)} items")
    print("Sample item:", json.dumps(extracted[0], indent=2))
    assert result["result"]["success"]
    assert len(extracted) > 0

def test_llm_extraction(tester: Crawl4AiTester):
    print("\n=== Testing LLM Extraction ===")
    schema = {
        "type": "object",
        "properties": {
            "model_name": {
                "type": "string",
                "description": "Name of the OpenAI model."
            },
            "input_fee": {
                "type": "string",
                "description": "Fee for input token for the OpenAI model."
            },
            "output_fee": {
                "type": "string",
                "description": "Fee for output token for the OpenAI model."
            }
        },
        "required": ["model_name", "input_fee", "output_fee"]
    }
    
    request = {
        "urls": "https://openai.com/api/pricing",
        "priority": 8,
        "extraction_config": {
            "type": "llm",
            "params": {
                "provider": "openai/gpt-4o-mini",
                "api_token": os.getenv("OPENAI_API_KEY"),
                "schema": schema,
                "extraction_type": "schema",
                "instruction": """From the crawled content, extract all mentioned model names along with their fees for input and output tokens."""
            }
        },
        "crawler_params": {"word_count_threshold": 1}
    }
    
    try:
        result = tester.submit_and_wait(request)
        extracted = json.loads(result["result"]["extracted_content"])
        print(f"Extracted {len(extracted)} model pricing entries")
        print("Sample entry:", json.dumps(extracted[0], indent=2))
        assert result["result"]["success"]
    except Exception as e:
        print(f"LLM extraction test failed (might be due to missing API key): {str(e)}")

def test_llm_with_ollama(tester: Crawl4AiTester):
    print("\n=== Testing LLM with Ollama ===")
    schema = {
        "type": "object",
        "properties": {
            "article_title": {
                "type": "string",
                "description": "The main title of the news article"
            },
            "summary": {
                "type": "string",
                "description": "A brief summary of the article content"
            },
            "main_topics": {
                "type": "array",
                "items": {"type": "string"},
                "description": "Main topics or themes discussed in the article"
            }
        }
    }
    
    request = {
        "urls": "https://www.nbcnews.com/business",
        "priority": 8,
        "extraction_config": {
            "type": "llm",
            "params": {
                "provider": "ollama/llama2",
                "schema": schema,
                "extraction_type": "schema",
                "instruction": "Extract the main article information including title, summary, and main topics."
            }
        },
        "extra": {"word_count_threshold": 1},
        "crawler_params": {"verbose": True}
    }
    
    try:
        result = tester.submit_and_wait(request)
        extracted = json.loads(result["result"]["extracted_content"])
        print("Extracted content:", json.dumps(extracted, indent=2))
        assert result["result"]["success"]
    except Exception as e:
        print(f"Ollama extraction test failed: {str(e)}")

def test_cosine_extraction(tester: Crawl4AiTester):
    print("\n=== Testing Cosine Extraction ===")
    request = {
        "urls": "https://www.nbcnews.com/business",
        "priority": 8,
        "extraction_config": {
            "type": "cosine",
            "params": {
                "semantic_filter": "business finance economy",
                "word_count_threshold": 10,
                "max_dist": 0.2,
                "top_k": 3
            }
        }
    }
    
    try:
        result = tester.submit_and_wait(request)
        extracted = json.loads(result["result"]["extracted_content"])
        print(f"Extracted {len(extracted)} text clusters")
        print("First cluster tags:", extracted[0]["tags"])
        assert result["result"]["success"]
    except Exception as e:
        print(f"Cosine extraction test failed: {str(e)}")

def test_screenshot(tester: Crawl4AiTester):
    print("\n=== Testing Screenshot ===")
    request = {
        "urls": "https://www.nbcnews.com/business",
        "priority": 5,
        "screenshot": True,
        "crawler_params": {
            "headless": True
        }
    }
    
    result = tester.submit_and_wait(request)
    print("Screenshot captured:", bool(result["result"]["screenshot"]))
    
    if result["result"]["screenshot"]:
        # Save screenshot
        screenshot_data = base64.b64decode(result["result"]["screenshot"])
        with open("test_screenshot.jpg", "wb") as f:
            f.write(screenshot_data)
        print("Screenshot saved as test_screenshot.jpg")
    
    assert result["result"]["success"]

if __name__ == "__main__":
    version = sys.argv[1] if len(sys.argv) > 1 else "basic"
    # version = "full"
    test_docker_deployment(version)